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Abstract

The objective of this project is to construct, select, calibrate and validate a prac-
tically applicable copula internal model of economic capital for insurance compa-
nies. Copula methodology makes it possible to address multiple dependent risk
factors. We identify the relevant set of asset and liability variables, and suggest a
copula model for the joint distribution of these variables. Estimates of economic
capital can be based on the tails of this joint distribution. Models are implemented
in open source software (R and Microsoft EXCEL) and tested using simulated as-
set/liability data. The results are presented as a finished software product which
can be utilized for customization and direct user application. The novelty of the
approach consists in estimating interdependent mortality, morbidity, lapse and in-
vestment risks in one multivariate model. In particular, we address the challenges
that life insurance companies face in the low interest environment. This approach
requires a methodology of copula model comparison and selection and implemen-
tation of Monte Carlo simulation to the estimation of economic capital.

1 Project Objectives
Economic capital (EC) as a measure of the company’s risk capital depends on a num-
ber of company-specific and external (both macroeconomic and industry-specific) risk
variables and formulaic model constructs. The authors use a copula approach to build
a predictive model estimating the amount of economic capital a life insurance com-
pany needs to protect itself against an adverse movement in interest rates, mortality,
and other risk drivers. Predictive modeling requires a study of statistical dependence
between diverse risks whose dependence can be expressed in terms of a joint distribu-
tion of risk variables using a copula function. Risk capital can then be estimated by
value-at-risk (VaR) and tail value-at-risk (TVaR) values.

For example, under the European Union’s Solvency II, the required capital is de-
termined using a VaR at the 99.5% level; under the Swiss Solvency Test, the required
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capital is determined using TVaR at the 99% level, see [9] for a comparison of the
European Union’s Solvency II system and the Swiss Solvency Test (SST). We will use
both approaches at the 99.5% level for comparison purposes.

Economic capital modeling allows insurance companies to obtain better control of
their risks and manage their business. The research paper sponsored by the SOA and
Towers Perrin [13] outlines the general EC framework for a life insurance company and
the major types of risk facing an insurance company. Mortality risk (including catas-
trophic, volatility, estimation, and trend risks) and interest rate risk are specified as key
liability and asset related risks. Due to the nature of insurance products underwritten
by a life insurance company, implementing EC for interest rate risk requires develop-
ing an advanced way of calculating capital needs for a mixture of mostly fixed-income
securities with various maturities and credit qualities.

Many large insurers and subsidiaries of European insurers are using EC and stress
testing models for solvency and high level capital planning considerations. However,
there are many companies unfamiliar with implementing a model framework. One of
the hurdles for new players is representing key dependent variables by their distribu-
tions, since industry and company experience is usually stated as a deterministic best
estimate rate. Another major challenge is combining all modeled drivers of loss risk
into a joint distribution. This is where the proper choice and use of a particular type of
copula comes in [26], [29], [36].

Since the financial crisis of 2008-2009, the U.S. regulators adhere to the policy
of maintaining interest rates at a very low level by historical standards. While this
policy seems to produce a positive effect on overall economic development, it has cre-
ated a challenging environment for the insurance industry. This effect is especially
pronounced for life insurance companies struggling to gain investment returns that are
sufficient for meeting their long term liabilities. Therefore our asset analysis is based
on post-crisis years addressing the unique challenges of low interest markets.

Recently, the Federal Reserve has raised interest rates several times and signaled
that it will continue raising rates in the nearest future. Higher interest rates would pro-
vide much needed relief to the life insurers that experienced a serious asset-liability
mismatch during the last ten years (see, for example, [24]). However, there are several
factors that might lead to preserving the low interest rate environment for the years to
come. Among them is the sheer size of funds the Federal Reserve induced into the
financial markets during its large-scale purchases of long-term government bonds and
other securities (quantitative easing program) in 2008, 2010 and 2012. This has created
a market where too many dollars are chasing too few investment opportunities. The
other factor is rather modest long-term economic growth expectations coming from the
Federal Reserve and shared by the market participants (see, for example, [22]).

Keeping this in mind, our research develops a practical approach to EC that would
help a life insurance company calculate its capital needs in the low interest rate environ-
ment. In order to do so, we create an asset-liability framework modeling an insurance
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company and use it to demonstrate how a copula-based approach can be applied to
establishing economic capital that would assist the company in sustaining an extended
period of low interest rates. The emphasis is made on statistical aspects of model
selection: choice of particular copula type and marginal distributions of the asset and
liability variables. Development of the model framework employed for the project uses
traditional life products to illustrate copula utility. For products with interest sensitivity,
equity market or other asset/liability linkages, use of the model will require possible
expertise from the end user that may include further correlation factor study, marginal
distribution development, use of R programming, etc. The severity of losses driving the
ultimate economic capital levels in the report’s illustrated base case is arbitrary though
intended to be somewhat realistic per magnitude. As noted above, use of a low interest
environment may also impact the severity of results. Section 2 describes the general
aspects of model construction, while in Section 3 we discuss the details of model selec-
tion and calibration. Simulation from a copula and calculation of the end-of-the-year
losses is covered in Section 4. Computer implementation and numerical examples are
presented in Section 5, also covering some model assumptions and model validation
aspects.

2 Model Construction

2.1 Internal Model for Economic Capital
Under modern insurance regulatory capital systems, like Solvency II, insurance com-
panies have the option to employ an internal model for the calculation of their required
capital. Here, we introduce an internal model which has been widely used in literature,
e.g., [5], [7], and [12]. In line with the Solvency II Directive, basic own fund (BOF)
is defined as the balance sheet amounts of assets over liabilities and subordinated lia-
bilities. For simplification, we assume that the insurer does not hold any subordinated
liabilities. Hence, the insurer’s BOF, which is the net value of assets minus liabilities,
at time 0 is

BOF (0) = A(0) − L(0), (1)

where

A(0) represents the deterministic market value of the assets at time 0,

L(0) represents the deterministic value of the insurer’s insurance liabilities at time 0,
which is the insurer’s total reserve at time 0.

Suppose the insurer makes investments into k assets, each with an annual return
rate Rj , j = 1, . . . , k. The portfolio weight of the j-th asset is wj , j = 1, . . . , k,
satisfying

∑k
j=1 wj = 1. Based on discrete compounding, the value of an insurer’s

assets at the end of the year can be expressed as:

A(T ) = A(0)(1 + wR),

where
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A(T ) represents the stochastic value of the insurer’s assets at end of the year,

w = (w1, . . . , wk), the vector of asset portfolio weights, which satisfies
∑k
j=1 wj =

1,

R = (R1, . . . , Rk), a random vector of asset returns.

The value of insurance liabilities at the end of the year depends on the insurer’s
annual excess loss rate, where excess loss represents the difference between the actual
claim amount and expected claim amount. Analogous to the asset side, suppose the
insurer has l lines of business, and each line of business has loss due to two causes.
For example, the two causes for whole life insurance could be mortality and lapse. We
define the annual excess loss rate for each business line and each cause as

Xj,r =
Cj,r − E[Cj,r]

L
(0)
j

, (2)

where

Xj,r represents the annual excess loss rate for the r-th cause of the j-th business line,

Cj,r is a random variable representing the annual claim amount for the r-th cause of
the j-th business line,

L
(0)
j represents the reserve at the beginning of the year for the j-th business line.

The insurer’s liabilities at the end of the year, L(T ), is the sum of its total reserve at
the end of the year and the annual total excess loss. Here, we assume that the total
reserve at the beginning of the year is the same as the total reserve at the end of the
year. This assumption is reasonable if the insurer has a stable liability portfolio and is
in a stable external environment, e.g., interest rate and mortality do not change. Under
this assumption, L(T ) − L(0), the change in the insurer’s liabilities over one year, is
just the annual total excess loss. Hence, the value of the insurer’s liabilities at end of
the year can be expressed as:

L(T ) = L(0)(1 + vX),

where

L(T ) represents the stochastic value of the insurer’s liabilities at the end of the year,
which is the sum of its total reserve at the end of the year and the annual total
excess loss,

X = (X1,1, X1,2, X2,1, X2,2, . . . , Xl,1, Xl,2), a random vector of annual excess loss
rate for each business line and each cause,

v = (v1, v1, v2, v2, . . . , vl, vl), the vector of liability portfolio weights, where vj =

L
(0)
j /L(0) denotes the weight of the j-th business line, j = 1, . . . , l.

Hence, the insurer’s BOF at the end of the year is

BOF (T ) = A(T ) − L(T ). (3)
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Then, the insurer’s total loss during the one-year horizon can be expressed as

BOF (0) −BOF (T ) =
(
A(0) − L(0)

)
−
(
A(T ) − L(T )

)
= L(0)vX−A(0)wR.

The insurer’s economic capital is the value at risk (VaR) of its total loss subject to a
confidence level of 99.5% over a one-year period, that is,

EC = VaR99.5%

(
L(0)vX−A(0)wR

)
, (4)

which depends on the tails of the total loss distribution. However, due to a complex
form of the joint distribution of (R,X), it will be difficult to obtain analytical expres-
sions for the tails of the distribution of total loss. Therefore, we will perform Monte
Carlo simulation of N independent copies of random vectors

(Ri,Xi), i = 1, . . . , N, (5)

which can be used to estimate the tail probabilities with a threshold y as the direct
count of tail points

1

N

N∑
i=1

I

(
L(0)vXi −A(0)wRi ≤ y

)
∼ Pr

(
L(0)vX−A(0)wR ≤ y

)
. (6)

Our model makes some simplifying assumptions with regard to the role of reserves
and the use of total losses vs. excess losses. Though reserves that are already estab-
lished for expected losses contain conservatism, we have assumed that the release of
such reserves during the model horizon roughly matches the expected loss component
of the total loss and will extinguish the expected loss one for one. As a result, we
subtract the expected loss from the total loss to establish the amount of unexpected, or
excess loss that is the key driver of an economic capital model. Our liability loss data
is thus intended to represent excess loss only, by product and loss type.

Since a typical economic capital model horizon is one year in length, movement
of reserves within that year are viewed as noise that may not impact the end of the
year result. The exceptional case would be reserve changes between time 0 and time T
that contemplate unexpected losses that are likely to occur after time T and need to be
booked after time 0, but before the end of the year. In these cases, our recommendation
is to scale up the baseline loss magnitude for time 0 to time T by incorporating this
characteristic into the moments of the product’s distribution or the estimated sample
loss data set used. The end user is invited to explore general economic capital theory
on this topic since the future losses driving this assumption do not occur in the time 0
to time T interval.

2.2 Modeling Asset Variables
We use a subset of Barclay indices to serve as proxies for our asset variables repre-
senting US bonds of different type and duration, emerging markets, mortgage backed
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securities, and other investment instruments typical for the general account of a life
insurance company. Such data can be observed on a monthly basis. Therefore, we will
model asset variables as the percentage returns on certain indices Pj ,

Rj =
P

(T )
j − P (0)

j

P
(0)
j

, j = 1, . . . , k, (7)

where P (0)
j is the initial index value (beginning of the year) and P (T )

j is the year-end
value of the index.

Most of the fixed income indices are likely to exhibit autocorrelation and variable
volatility. Therefore, we perform the conventional time series analysis as in [1] and
[18] in order to isolate the stationary stochastic components Uj , filtering out major
effects of autocorrelation (ARIMA). We have also considered GARCH filtering to ad-
dress heteroskedasticity, but, while having an important effect for daily data, it proved
to be statistically insignificant on a monthly basis. Then we develop a joint distribution
model of U = (U1, . . . , Uk), which will be used to model R = (R1, . . . , Rk).

Let us consider times t = 1, 2, . . . , T , where the time increment will correspond to
1 month and T = 12 for a full year. We will start with P (0)

j and evaluate P (T )
j in 12

time steps. Notice that this analysis can be done using end-of-the-month index values or
average-of-the-month values, where the latter choice corresponds to the ”Asian option”
approach, which is becoming increasingly popular in insurance modeling. One step
with t = 1, 2, . . . , T can be decomposed into substeps [1], [21], [23]:

• P (t)
j = P

(t−1)
j exp

(
S
(t)
j

)
, where S(t)

j is the monthly log-return;

• D(t)
j = ∆d

(
S
(t)
j

)
, where ∆ is the difference operator, ∆f (t) = f (t) − f (t−1),

∆df (t) = ∆d−1f (t) −∆d−1f (t−1) reflecting possible non-stationarity;

• D(t)
j = ϕj0 +

∑p
i=1 ϕiD

(t−i)
j +

∑q
i=1 θiD

(t−i)
j + U

(t)
j , as in ARIMA(p, d, q);

In case of d = 0, no additional differences needs to be applied, and D(t)
j =

∆0
(
S
(t)
j

)
= S

(t)
j .

• If residuals U (t)
j expose clear heteroskedasticity (variable volatility), an addi-

tional GARCH step can be introduced to address this issue. So far we have not
detected a necessity for this step in monthly data (see the more detailed discus-
sion in Section 3.2).

Finally, Uj is a stochastic stationary component whose distribution belongs to one of a
few popular parametric families. We considered the standard normal (Gaussian) distri-
bution N(0, σ2) or in the case of fatter tails and asymmetry, the skewed t-distribution
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introduced in [2] (an alternative is provided in [18]) with density

d(x;α, ν, ξ, ω) = 2 tν(y) Tν+1(z), (8)

where y = (x− ξ)/ω, z = αy
√

(ν + 1)/(ν + y2), and

tν(y) =
Γ
(
ν+1
2

)
σ
√
πνΓ

(
ν+1
2

) (1 +
y2

ν

)− ν+1
2

.

Here tν(y) and Tν(y) are the p.d.f. and the c.d.f. of a t-distribution with ν degrees of
freedom, ξ and ω are the location and scale parameters, α is the skewness parameter,
and Γ(x) is the gamma function. The degree of freedom parameter can take on any
real values such that ν > 2, which guarantees the existence of variance. The skewness
parameter can take on values from the interval (−1, 1). The standard normal distribu-
tion can be treated as a degenerate case of skewed t with ν →∞ and α = 0.
This model for any j = 1, . . . , k will be characterized by its own set of p + q + 5
ARIMA and skewed t-distribution parameters (subscript j omitted):(

ϕ0, . . . , ϕp, d, θ1, . . . , θq, α, ν, ξ, ω). (9)

Estimation of model parameters can be done separately for ARIMA and Uj dis-
tribution fitting via MLE or Bayes estimation in the case when reasonable priors are
available.

2.3 Modeling Liability Variables
A similar approach can be used to model liability variables if we obtain time series
data sufficient for model calibration (estimation of parameters in (9)). In this study,
in the absence of extensive time series liability data, we suggest a simplified model,
which assumes a moving average (MA) monthly claim amount structure. We can then
evaluate annual excess loss rates based on annual claim amount using (2).

Considering the r-th cause of loss in the j-th business line, as defined in section
2.1, let Cj,r be the annual claim amount, and C(t)

j,r , t = 1, . . . , 12, be the monthly claim
amount satisfying

Cj,r =
12∑
t=1

C
(t)
j,r .

We assume that monthly claim amountC(t)
j,r , t = 1, . . . , 12, follows a modified moving-

average (MA) of order 1 model, i.e.,

C
(t)
j,r = U

(t)
j,r + βj,rU

(t−1)
j,r (10)

where U (t)
j,r , t = 0, . . . , 12, are mutually independent and follow a common log-normal(

µj,r, σ
2
j,r

)
distribution. Hence, the annual claim amount is

Cj,r =
12∑
t=1

C
(t)
j,r = βj,rU

(0)
j,r + (1 + βj,r)

11∑
t=1

U
(t)
j,r + U

(12)
j,r . (11)
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Including a moving average term with parameter βj,r > 0 addresses the effect of
month-to-month carryover of the claim amount. This model for any line of business
j = 1, . . . , l and any cause of loss r = 1, 2 would be characterized by its own set
of moving average parameter β and 2 marginal distribution parameters (subscript j, r
omitted): (

β, µ, σ). (12)

A widely used assumption is that the sum distribution of independent log-normal
random variables is well approximated by another log-normal random variable, see [4],
[6], and [33]. Hence, equations (10) and (11) imply that both monthly claim amount
and annual claim amount approximately follow log-normal distributions, which is con-
sistent with many empirical studies. Wilkinson’s method, see [33], estimates param-
eters µj,r and σj,r by matching the first and second moments, that is, by solving the
following two equations:

E[Cj,r] = 12 (1 + βj,r) e
µj,r+σ

2
j,r/2,

V ar (Cj,r) =
(
β2
j,r + 11(1 + βj,r)

2 + 1
) (
eσ

2
j,r − 1

)
e2µj,r+σ

2
j,r .

In the presence of reliable data, one can assume a different autocorrelation structure
on U (t)

j,r and modify (10) accordingly. Also, instead of a log-normal model for U (t)
j,r ,

one can consider Gamma, Weibull, or composite models which are made up by piecing
together two weighted distributions at a specified threshold, see [8] and [34] for more
details regarding fitting insurance liability data using composite models. In the case of
composite models, the distribution of U (t)

j,r is not preserved in Cj,r as defined in (11).

2.4 Copula Model of the Joint Distribution
Models for individual asset and liability variables considered in two previous sub-
sections include distributions of the stationary stochastic components of vector V =
(U1, . . . , Uk, U1,1, . . . , Ul,2). The first k components, corresponding to assets, will be
modeled by the skewed t-distribution and the last l× 2, corresponding to liabilities, by
the log-normal distribution. However, the components of this vector are not necessar-
ily independent. In the case of asset variables, it is likely that the correlation between
components is rather strong, and moreover, their association may go beyond the corre-
lation, getting stronger in the tails. Tail dependence may be successfully modeled by
copulas [14]. In the case of some liability variables (mortality and morbidity related
losses), we may assume independence from the market and, therefore, from the asset
variables. However, for lapse related losses we allow for a certain dependence on the
market. Thus, we consider a general copula model for all k + l × 2 variables.

Assume that Fj(u) is the c.d.f. of the j-th component Uj of the vector U. Then a
copula model is defined for the joint distribution of U as

Cγ(F1(u1), . . . , Fk+2l(uk+2l)) = P (U1 ≤ u1, . . . , Uk+l×2 ≤ uk+l×2), (13)
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where Cγ is a special copula function with the set of parameters γ. We consider cop-
ulas of two types.

Elliptical copulas. The elliptical distributionQd,R of a random vector t = (t1, . . . , td)
can be defined by its joint density function

|Σ|−1/2k((t− µ)TΣ−1(t− µ)),

where µ is a d×1 vector of means, Σ is a positively defined d×d covariance matrix, and
k(x) is some non-negative function of one variable integrable over the entire real line.
Matrix R with elements Rij = Σij/

√
Σii × Σjj is the correlation matrix determining

all pairwise associations between the components of the random vector t. Define also
by Qi(ti) the marginal distribution of ti. Then we can define an elliptical copula as

CR(t1, . . . , td) = Qd,R(Q−1
1 (t1), . . . , Q−1

d (td)). (14)

The most popular elliptical copula is the Gaussian copula, which, combined with
marginal distributions ti = Fi(ui) of the data vector U = (U1, . . . , Ud), defines the
joint distribution H(u) of vector U as

H(u) = CR(t1, . . . , td) = Φd,R(Φ−1(F1(u1)), . . . ,Φ−1(Fd(ud))), (15)

where Φ(u) is the standard normal distribution and Φd,R is d-variate normal with zero
mean, unit variances and correlation matrix R. Off-diagonal elements of matrix R de-
scribe pairwise associations, so the strength of the association may differ for different
pairs of components of vector U. Gaussian copulas have been widely used in finance,
but proved to be inefficient in estimating the tail dependence [25].

Another popular choice of an elliptical copula is Student’s t-copula [10],

H(u) = CR(t1, . . . , td) = Td,η,R(T−1
η (F1(u1)), . . . , T−1

η (Fd(ud))), (16)

where Tη(x) is a t-distribution with η degrees of freedom, and Td,η,R is d-variate t-
distribution with η degrees of freedom, and correlation matrix R. In our case dimen-
sionality is d = k + 2l. It works sufficiently well for financial applications, which
encounter both lower and upper tail dependence. An attractive feature of the t-copulas
is a possibility to treat the correlation parameters, defined by the correlation matrix,
and the degree of freedom parameter separately [36]. The total number of copula pa-
rameters is (k + 2l)(k + 2l − 1)/2 distinct terms of the symmetric correlation matrix
R and one number of degrees of freedom η.

Archimedean copulas. Clayton’s, Frank’s and Gumbel-Hougaard’s copula families
provide a valid alternative to the use of elliptical copulas for modeling joint distribution
tails. However, in dimensions higher than d = 2 they require additional definition
of the hierarchical structure (vines and nested copulas being two main options, see
[35]). We will consider Clayton’s nested copula family as in [20], [30] along with
Student’s t-copula as possible choices. Clayton’s nested copula is built using a stepwise
hierarchical procedure, such as

Cγ1,2(t1, t2, t3) = Cγ2 [Cγ1(t1, t2), t3] (17)
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from Clayton’s pair copulas

Cγ(t1, t2) = max{(t−γ1 + t−γ2 − 1)−1/γ , 0}, γ ∈ [−1; 0) ∪ (0;∞). (18)

The total number of parameters for a fully nested Archimedean copula is k+ l− 1,
and could be higher for partially nested models and vines [32].

3 Model Selection and Calibration

3.1 Variable Selection
Since 1973, the Bloomberg Barclays Indices [3] have been the most widely used in-
dices for fixed income investors looking for representative benchmarks to measure
asset-class risks and returns. On August 24, 2016, Bloomberg acquired these assets
from Barclays. Barclays and Bloomberg have partnered to co-brand the indices as the
Bloomberg Barclays Indices for an initial term of up to five years. The University of
St. Thomas provides access to the Bloomberg terminal and index data are available
through this for our research. We retrieved daily settlement data for the last 15 years
in order to collect information for our study and model calibration. We used monthly
averages of daily settlement prices. In order to replicate a typical asset portfolio of a
life insurance company, see [37], we selected nine (k = 9) Bloomberg Barclay indices
(see Table 1).

Table 1: Selected Bloomberg Barclay indices.

Number Ticker Index
1 LUMS(TRUU) Barclays US MBS Index
2 LUAC(TRUU) Barclays Capital U.S. Corporate Bond Index
3 EMUS(TRUU) Barclays Capital Emerging Markets Bond Index
4 LUCM(TRUU) Barclays Capital U.S. CMBS (ERISA Only) Index
5 LU35(TRUU) US Aggregate 3-5 Years
6 LU57(TRUU) US Aggregate 5-7 Years
7 LU71(TRUU) US Aggregate 7-10 Years
8 LF98(TRUU) Barclays Capital U.S. Corporate High Yield Bond Index
9 LU13(TRUU) Barclays Capital U.S. 1-5 Year Corporate Bond Index

Indices 2, 5-7, and 9 correspond to U.S. corporate bonds of various duration, in-
dices 1 and 4 represent mortgage backed securities (both home and commercial mort-
gages), index 3 represents emerging markets, and index 8 represents high yield bonds.
The mix of these nine indices (with variable weights) can represent a wide range of
investment strategies used by life insurance companies. We used daily data for prelim-
inary analysis, and then applied end-of-the-month and monthly averages for time series
model development. A monthly periodicity makes it possible to synchronize asset and
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liability data, since the latter are not likely to be observed on a daily basis. We selected
monthly averages (similar to Asian option approach) as exhibiting the most stable pat-
terns to implement the models described in Section 2.2 and further copula modeling as
introduced in Section 2.4. The results of the preliminary estimation are summarized in
Section 3.2.

For liability modeling we selected six variables representing losses characterizing
a typical product mix of a life insurance company.

Table 2: Selected loss variables.
Number Product Source of Loss

1 Term Life (TL) Mortality
2 Lapse
3 Whole Life (WL) Mortality
4 Lapse
5 Disability Income (DI) Morbidity
6 Lapse

At this point we do not have reliable monthly time series data that would allow us
to obtain empirical estimates of the parametric distributions for liability variables. The
development of our sample data for liability distribution analysis is the best estimate,
based upon the judgement of an actuary familiar with the concept of economic capital
and is intended to be illustrative and not necessarily indicative of any type or size of the
company. Our process of the distribution elicitation roughly follows this procedure:

• Start with Solvency II guidance with regard to moments and extremes of loss.

• Use historical/anecdotal evidence from the last 200 years; companies may use
200 years if following the most standard approach. An example might be the
Spanish flu outbreak of 1918 or plague outbreaks of middle age times.

• Form an industry best practice view of outlier losses by networking or using an
expert who has seen a number of industry models in use. Our actuarial expert
has seen about 5 models and their driving assumptions (and was careful not to
disclose any confidential information or reuse it).

• Select mean, standard deviation and 99.5% points for each loss distribution by
product and loss type.

• Using the above and best estimation, develop the distribution model and the es-
timates of its mean and variance that seem logical compared to experience with
year to year losses on the job as well as the points selected in the previous step.

Though this approach does not produce actual data used in a consulting or com-
pany model, we feel that this procedure gives us a usable starting point for liability loss
drivers. It is also key to stress that the purpose of this project is not to improve robust-
ness of liability loss assumption development, but to demonstrate the use of copulas
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for economic capital modeling.

One of the further objectives of the project is to make the end users of our product
able to enter their own liability data into the model template. With this approach, if
the end users obtain an estimate of their annual expected claim amount and its standard
deviation for all business lines along with an estimate of reserve, they can develop a
model for their particular product mix. The input data we use in the development of
EC calculations are summarized in the attached file EC Inputs and Results.xlsm.

3.2 Parametric Estimation for Asset Variables
ARIMA Model. We begin with an ARIMA analysis of the asset variables (nine indices
specified in Table 1). All procedures are implemented in R using auto.arima proce-
dure from the forecast package and the package rugarch [15], which is convenient for
diagnostics of heteroskedasticity in case a GARCH component is to be added in the
future. We carried out the time series analysis of daily settlement prices as well as
monthly averages obtaining normalized residuals Uj , j = 1, . . . , k. The analysis of
monthly averages suggests optimal values for ARIMA parameters p, d, q. The trans-
formation to log-returns in the construction of Section 2.2 achieves stationarity, thus
further ARIMA differencing appears to be rarely necessary; for eight out of nine in-
dices d = 0. A GARCH(1,1) step does not significantly improve overall performance
of the models for monthly averages since the effect of variable volatility is much more
pronounced in the case of daily values. This can be demonstrated in Figure 1 and Fig-
ure 2, where the time series plot of ARIMA residuals is graphically compared with the
ARIMA/GARCH residuals for the index LUMS(TRUU).

Figure 1: LUMS(TRUU) ARIMA residuals, daily values.
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Figure 2: LUMS(TRUU) ARIMA/GARCH(1,1) Residuals, Daily Values.

In Figures 3 and 4 we can compare ARIMA residuals V (t) with ARIMA/GARCH
residuals U (t) for the same index, LUMS(TRUU). Graphically, the difference between
these two is not clearly expressed. Table 3 contains the values of ARIMA coefficients
as estimated via MLE [15]. Detailed results of parametric estimation are provided in
the worksheet ARIMA Parameters of the attached file EC Inputs and Results.xlsm.

Figure 3: LUMS(TRUU) ARIMA residuals, monthly averages.

Figure 4: LUMS(TRUU) ARIMA/GARCH(1,1) residuals, monthly averages.
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Table 3: Estimation of ARIMA parameters for asset variables
Index ARIMA ϕ0 ϕ1 ϕ2 θ1 θ2 θ3 θ4
LUMS (2,0,2) .009 -1.35 -.37 1.62 .66 0 0
LUAC (1,0,3) .009 -.97 0 1.42 .30 -.15 0
EMUS (0,0,1) .007 0 0 .52 0 0 0
LUCM (0,0,4) 0 0 0 .60 .04 .22 .40
LU35 (2,0,2) .008 -1.33 -.35 1.62 .65 0 0
LU57 (1,0,3) .007 -.98 0 1.24 .07 -.21 0
LU71 (2,0,3) .001 -.88 .09 1.17 -.07 -.29 0
LF98 (2,0,3) .015 -.39 -.74 .82 1.00 .18 0
LU13 (1,1,3) 0 -.98 0 0.38 -.84 -.32 0

Marginal Distributions. Goodness-of-fit analysis was performed for the residuals
Uj , and the p-values for both the normal and skewed t-distribution were calculated.
It became clear that while the normal distribution provided a reasonable fit for most
indices, the most interesting ones (EMUS related to emerging markets, LUCM related
to commercial mortgage backed securities, and LF98 for high yield bonds) exhibit tails
fatter than normal and require the use of the skewed t-distribution. Parametric estimates
and goodness-of-fit results are shown in Table 4 and summarized in the worksheet As-
set Parameters of the attached file EC Inputs and Results.xlsm.

Table 4: Estimation of marginal distributions for asset variables
Index α ν ω ξ GOF GOF

skewed t normal
LUMS -.197 5.590 .005 .001 0.86 0.35
LUAC -.593 4.219 .010 .005 0.82 0.14
EMUS -.320 3.236 .012 .004 0.98 0.002
LUCM .036 2.335 .008 .002 0.77 0.003
LU35 -.706 8.533 .005 .003 0.96 0.74
LU57 -.525 4.817 .007 .003 0.97 0.57
LU71 -.576 3.964 .009 .004 0.98 0.15
LF98 .007 2.769 .012 0 0.99 0.008
LU13 .235 5.915 .002 -.001 1.00 0.67

3.3 Parametric Estimation for Liability Variables
For the simplified liability model (11) suggested in Section 2.3 for Uj,r; j = 1, . . . 3;
r = 1, 2, we used the 200 sample years of experience to check the goodness-of-fit
of log-normal, Gamma, and Weibull distributions, which are satisfactory. However,
composite distributions (e.g., log-normal/Pareto) demonstrated slightly better fit of the
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tail values. AIC (Akaike Information Criterion) defined as

AIC = 2m− 2 lnL,

where m is the total number of parameters and L is the maximum of the likelihood
function for a given model, was used for model comparison. The log-normal model
was chosen due to the simplicity of implementation of the moving average model (11).

The results of the parametric estimation in the log-normal model are demonstrated
in Table 5, where parameters µ and σ correspond to monthly values Uj,r, j = 1, . . . 3;
r = 1, 2 obtained directly from estimates E(Cj,r) and V ar(Cj,r) under the assump-
tions of βj,r ≡ 0.1; 0.5; 0.99; j = 1, . . . 3; r = 1, 2. The approach of Section 3.1 was
used as suggested by industry consultants according to the Solvency II recommenda-
tion. Different values of βj,r lead to slightly different values for µ and σ. Detailed
inputs for the estimation of µ and σ with and without the additional 1.8 factor applied
to the estimate of the standard deviation of claim amount Cj,r, as recommended by
industry consultants, are provided in the worksheet Liability Inputs of the attached file
EC Inputs and Outputs.xlsx and the code necessary for this estimation is included in
EC Simulation.R.

Table 5: Estimation of marginal distributions for liability variables
Liability β = .1 β = .5 β = .99

µ σ µ σ µ σ
TL Mortality 16.36 .183 16.05 .185 15.76 .186
TL Lapse 14.99 .045 14.67 .046 14.39 .046
WL Mortality 14.61 .183 14.30 .185 14.02 .186
WL Lapse 13.24 .045 12.93 .046 12.65 .046
DI Morbidity 16.37 .217 16.06 .220 15.77 .220
DI Lapse 14.78 .045 14.47 .046 14.19 .046

3.4 Choice and Calibration of Copula
We apply copula models to the normalized residuals of the asset variables Uj , j =
1, . . . , k without a GARCH correction (GARCH(0,0)). The choice of a copula model
and its calibration (parameter estimation) is carried out based on the data for asset vari-
ables, for which simultaneous time series are available. Liability variables are added
to the set at the next stage involving the simulation from a copula and the estimation
of economic capital (see Section 4). In order to compare the performance of Gaussian
copulas, t-copulas, and Archimedean copula structures, we will follow the model se-
lection procedures outlined in [17], [21], and [23] for stock index data. At this point,
the AIC analysis in Table 6 (the lower AIC value corresponds to the better model) sug-
gests that, for the restricted set of variables j = 1, . . . , k, the t-copula outperforms the
other two classes, which is consistent with the literature, see [36]. We use the t-copula
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as the model of choice in the current setting. However, it is possible that a more ac-
curate choice of the Archimedean copula and its hierarchical structure may suggest a
different model selection, when liability variables are included in the study. For com-
parison purposes, in Figure 5 we include a nesting diagram for the Clayton’s copula,
which provides some insight on relative distances between the asset classes.

Table 6: Copula model comparison
Copula Marginals AIC
Normal Normal -12775

Skewed t -12381
t Normal -12847

Skewed t -12984
Clayton Normal -10814

Skewed t -11556

Figure 5: Nesting structure for the hierarchical Clayton copula.

Table 7 shows the estimated correlation parameters of the t-copula forming a sym-
metric 9 × 9 correlation matrix R1. The estimate of the copula degree of freedom
parameter is η = 2.4155, which, in the model, is the common value for all variables.
In this work, the R packages sn [2] and copula [19] were applied, with a combina-
tion of generalized method of moments and MLE used to estimate copula parameters.
More detailed results of parametric estimation and model selection are provided in the
worksheet Correlation Table of the attached file EC Inputs and Results.xlsm.
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Table 7: Estimated correlations for t-copula: R1, lower triangular view.
Ticker/Number 1 2 3 4 5 6 7 8 9
LUMS 1
LUAC .61 1
EMUS .46 .81 1
LUCM .38 .50 .51 1
LU35 .91 .75 .57 .48 1
LU57 .86 .76 .58 .58 .95 1
LU71 .85 .79 .57 .56 .90 .97 1
LF98 .16 .60 .77 .47 .26 .29 .24 1
LU13 .73 .63 .49 .38 .87 .76 .69 .24 1

4 Simulation

4.1 Simulation from Copula
We concentrate on the t-copula suggested by the model comparison in Table 6 as the
best choice for the set of the asset variables. Applying the copula model to all 15
variables (including liabilities) will allow us to generate month-by-month values of
ARIMA innovations for assets Uj , j = 1, . . . , k = 9, and MA innovations for liabili-
ties Uj,r, j = 1, . . . 3; l = 1, 2. The values in Section 4.2 are used to generate multiple
future scenarios of the end-of-the-year development of our asset/liability portfolio and
then, in Section 4.3, are applied to the estimation of economic capital. If all copula
parameters (including the parameters of the marginal distributions) are defined, we can
use R packages [31] to perform this simulation.

For each asset variable j = 1, . . . , k = 9 we have defined the set of parame-
ters, which we can use in the t-copula framework: (αj , νj , ξj , ωj). For each j =
1, . . . 3; l = 1, 2 we have defined the set of parameters, which we can use in the t-
copula framework: (µj,r, σj,r). Copula parameters η (copula degrees of freedom) and
symmetric correlation matrix R, size 15 × 15, later defined in Table 10, are also nec-
essary for the simulation. However, only part of the matrix R1 (asset correlations) is
already estimated. We need additional information on liability-to-liability correlations
and asset-to-liability correlations. The nature of the data we use to estimate liability
variables does not provide enough information for such estimation. Hence we need to
elicit expert information to supplement our estimates from the data.

In order to establish preliminary estimates of the correlations between asset and li-
ability variables, we will use Table 8 based on our analysis of Solvency II requirements
and expert estimates provided by industry consultants. These values express the idea
that though it is not clear whether there exists an association between mortality and
morbidity on one hand, and the state of the market on the other hand, we can safely
assume that losses due to lapses will be higher at the lower markets.
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Table 8: Correlations of asset and liability variables: R2.
Liability/Index 1 2 3 4 5 6 7 8 9
TL Mortality(10) 0 0 0 0 0 0 0 0 0
TL Lapse(11) -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1
WL Mortality(12) 0 0 0 0 0 0 0 0 0
WL Lapse(13) -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1
DI Morbidity(14) 0 0 0 0 0 0 0 0 0
DI Lapse(15) -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1 -.1

Similarly, expert opinion based on the Solvency II requirements suggests the cor-
relation structure of liability variables summarized in Table 9. Combining symmetric
matrices R1 from Table 7 and R3 from Table 9 with the 6 × 9 block matrix R2 from
Table 8, we construct the 15× 15 correlation matrix as suggested in Table 10.

Table 9: Correlations of liability variables: R3, lower triangular view.
Liability/Index 1 2 3 4 5 6
TL Mortality (10) 1
TL Lapse (11) .3 1
WL Mortality(12) .5 .1 1
WL Lapse(13) .1 .5 .3 1
DI Morbidity(14) .25 .1 .25 .1 1
DI Lapse(15) .1 .1 .1 .1 .3 1

Table 10: Structure of correlation matrix R.
Variable 1-9 10-15

1-9 R1 RT2

10-15 R2 R3

The attached file, EC Inputs and Results.xlsm, summarizes all parametric estimates
needed to perform the simulation from the t-copula and further year-end value calcu-
lations. We use the R package sn [2] to simulate values from the skewed t-distribution.
The corresponding R code is attached as EC Simulation.R and an example of the sim-
ulation result (1000 years) is provided in EC Inputs and Results.xlsm
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4.2 Calculation of Year-end Values
Results. We obtain N independent copies of the end-of-the-year values of portfolio
variables as relative (percentage) investment gains and excess losses

(Ri,Xi), i = 1, . . . , N, (19)

which will be used in the final calculation of economic capital.

Inputs. We begin with the results of the simulation in Section 4.1: for each month
t = 1, . . . , 12 we define a k + l × 2 = 15-dimensional vector

u(t) = (u
(t)
1 , . . . , u

(t)
9 , u

(t)
1,1, . . . , u

(t)
3,2), (20)

where k = 9 is the number of asset variables and 3 × 2 = 6 is the number of liability
variables. In this array of 15× 12, all twelve columns representing months of one year
are independent, and in each column the dependence between the rows corresponds to
the t-copula structure.

Additional inputs are provided by the parameters of the ARIMA (pj , dj , qj) models
estimated for all asset variables j = 1, . . . , k = 9 as

• autoregressive parameters ϕj0, ϕj1, . . . , ϕjpj , and

• moving average parameters θj1, . . . , θjqj .

For all j it holds that pj ≤ 2 and qj ≤ 4, so that we can consider a rectangular array of
parameters size (max(pj)+1)+max(qj))×j = 7×9, substituting zeros where needed.
Notice also that the differencing (integrated) parameter dj = 0 for j = 1, . . . , 8 and
d9 = 1 for the index LU13(TRUU). Therefore we address this index separately.

As the initial values for the ARIMA steps, we are required to obtain for asset vari-
ables j = 1, . . . , k = 9, the values P (0)

j , P
(−1)
j , P

(−2)
j . In the case of an absence

of reliable information, we can use only P
(0)
j and make a simplifying assumption

P
(−2)
j = P

(0)
j and P (−1)

j = P
(0)
j .

Assets. For the asset variables, our goal is to evaluate the percentage returns on
certain indices Pj ,

Rj =
P

(T )
j − P (0)

j

P
(0)
j

=
P

(T )
j

P
(0)
j

− 1, j = 1, . . . , k = 9, (21)

where P (0)
j is the initial index value (beginning of the year) and P (T )

j is the year-end
value of the index. Notice that ARIMA(p, d, q) models are suggested not for index
values directly, but for for monthly log-returns

S
(t)
j = ln

P
(t)
j

P
(t−1)
j

, (22)
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defined for all values of t = 1, . . . , T = 12, and also if needed for t = 0,−1,−2, etc.
Thus equation (3) can be rewritten for j = 1, . . . , 9 as

Rj = exp

( 12∑
t=1

S
(t)
j

)
− 1 (23)

and for LU13(TRUU) in the presence of differencing as

Rj = exp

(
12S

(0)
j +

12∑
t=1

(12− t+ 1)D
(t)
j

)
− 1, (24)

where D(t)
j = S

(t)
j −S

(t−1)
j is the first difference operator. The calculation of S(t)

j and

D
(t)
j , to be plugged into (23) and (24), is provided in the ARIMA subsection below.

ARIMA
Case 1 (j = 1, . . . , 8, input for formula (23)): Let us consider times t = 1, 2, . . . , T ,

where the time increment will correspond to 1 month and T = 12 for a full year. We
will start with initial values S(0)

j and S(−1)
j , and evaluate S(t)

j for all 12 time steps.
If the initial values are not available, in accordance with the simplifying assumption
above, take S(0)

j = S
(−1)
j = 0. Initial values used in the EC calculation below are

provided in worksheet Initial ARIMA of the file EC Inputs and Results.xlsm.

The algorithm is based on the ARIMA(p,0,q) model:

S
(t)
j = ϕj0 +

2∑
i=1

ϕjiS
(t−i)
j + u

(t)
j +

4∑
i=1

θjiu
(t−i)
j . (25)

We will implement 12 steps:

• S(1)
j = ϕj0 + ϕj1S

(0)
j + ϕj2S

(−1)
j + u

(1)
j

• S(2)
j = ϕj0 + ϕj1S

(1)
j + ϕj2S

(0)
j + u

(2)
j + θj1u

(1)
j

• S(3)
j = ϕj0 + ϕj1S

(2)
j + ϕj2S

(1)
j + u

(3)
j + θj1u

(2)
j + θj2u

(1)
j

• S(4)
j = ϕj0 + ϕj1S

(3)
j + ϕj2S

(2)
j + u

(4)
j + θj1u

(3)
j + θj2u

(2)
j + θj3u

(1)
j

• S(5)
j = ϕj0 +ϕj1S

(4)
j +ϕj2S

(3)
j +u

(5)
j + θj1u

(4)
j + θj2u

(3)
j + θj3u

(2)
j + θj4u

(1)
j

• . . .

• S(12)
j = ϕj0 + ϕj1S

(11)
j + ϕj2S

(10)
j + u

(12)
j + θj1u

(11)
j + θj2u

(10)
j + θj3u

(9)
j +

θj4u
(8)
j
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and plug in the resulting S(t)
j values in (23).

Case 2 (j = 9, first differences applied; input for formula (24)): Let us con-
sider times t = 1, 2, . . . , T , where the time increment will correspond to 1 month
and T = 12 for a full year. Pay attention to p9 = 1 and q9 = 3. We will evaluate
Dj(t) = S

(t)
j − S

(t−1)
j starting with initial value D(0)

j , and evaluating D(t)
j for all 12

time steps. If the initial values are not available, in accordance with the simplifying
assumption above, take D(0)

j = 0.

The algorithm is based on the ARIMA(1,0,3) model for differences Dj , j = 9:

D
(t)
j = ϕj0 + ϕj1S

(t−1)
9 + u

(t)
j +

3∑
i=1

θjiu
(t−i)
j . (26)

We will implement 12 steps:

• D(1)
j = ϕj0 + ϕj1D

(0)
j + u

(1)
j

• D(2)
j = ϕj0 + ϕj1D

(1)
j + u

(2)
j + θj1u

(1)
j

• D(3)
j = ϕj0 + ϕj1D

(2)
j + u

(3)
j + θj1u

(2)
j + θj2u

(1)
j

• D(4)
j = ϕj0 + ϕj1D

(3)
j + u

(4)
j + θj1u

(3)
j + θj2u

(2)
j + θj3u

(1)
j

• . . .

• D(12)
j = ϕj0 + ϕj1D

(11)
j + u

(12)
j + θj1u

(11)
j + θj2u

(10)
j + θj3u

(9)
j

and plug in the resulting D(t)
j values in (24).

Liabilities. As follows from the simplified model(11), with the parameter values
βj,r specified in advance for all l × 2 = 6 losses corresponding to product lines j =
1, . . . , l = 3; r = 1, 2, variables Xj represent percentage or relative year-end losses
and u(t)j,r for j = 1, . . . , l = 3; r = 1, 2 and t = 1, . . . , 12 are simulated values from
the copula model,

Cj,r =
12∑
t=1

u
(t)
j,r = βj,ru

(0)
j,r + (1 + βj,r)

11∑
t=1

u
(t)
j,r + (1− βj,r)u(12)j,r . (27)

Thus the results of the simulation for liability variables are directly translated into the
end-of-the-year relative liabilities Xj using the expected claim amount E[Cj,r] and
reserve amount L(0)

j :

Xj,r =
Cj,r − E[Cj,r]

L
(0)
j

.
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Finally, when all Xj,r are evaluated according to (2), the end-of-the-year gain/loss
on the portfolio value can be calculated as a percentage of reserve

Y =
1

L(0)
(BOF (0) −BOF (12)) =

A(0)

L(0)

9∑
j=1

wjRj −
3∑
j=1

vj

2∑
r=1

Xj,r, (28)

where weights wj can be determined by the investment mix for j = 1, . . . , k = 9 and
weights vj by the product mix for j = 1, . . . , l = 3.

5 Estimation of Economic Capital

5.1 Computer Implementation
Simulation is carried out in R, version 3.5.1, using R-studio, version 1.1.463 (optional).
Inputs and outputs are written in Microsoft Excel using VBA macros. Inputs used in the
simulation are summarized in EC Inputs and Results.xlsm and organized in separate
worksheets:

• Instructions and troubleshooting

• EC Results (defining the confidence level and formulas used for VaR and TVaR
and performing EC calculations using updated output of the simulation);

• Asset/Liability Results providing full results on relative one-year changes in all
asset and liability variables in order of severity using updated output of the sim-
ulation, provided for diagnostic purposes;

• Liability inputs (including moving average parameter β);

• Weights of asset classes and product mix;

• Correlation table and copula parameters;

• Number of years (scenarios) N ;

• Asset parameters (skewed t distribution);

• Initial ARIMA values;

• ARIMA parameters for asset variables;

The executable code in R is attached as EC Simulation.R. The simulation code
retrieves the required input directly from EC Inputs and Results.xlsm. Its output is
automatically exported to Microsoft Excel using functions defined in [38] and [39],
written in EC Outputs.xlsx and exported to the worksheet EC Results of the file EC
Inputs and Results.xlsm.
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File EC Outputs.xlsx plays a supplementary role and does not have to be analyzed
separately other than for monitoring of the model performance. Its column A contains
the end-of-the-year values of total gains Y defined in (28) as a percentage of reserve,
sorted in the increasing order. Thus the first several rows of the worksheet represent the
high-loss years further used in VaR and TVaR calculation. Each row of the worksheet,
along with the total gains in column A, contains components of vector (R,X) as de-
fined in (5). These components are listed in columns B-P. Column A is exported to EC
Results worksheet of EC Inputs and Results.xlsm and used in further EC calculations.
Columns B-P are exported to worksheet Asset Liability Results of EC Inputs and Re-
sults.xlsm for diagnostic purposes to determine individual contributions of asset and
liability variables to the final EC values.

5.2 Example of EC Calculation
In the numerical example considered below, we take A0 = 1.1L0 to reflect the initial
surplus of assets over reserve. Weights are allocated according to expert suggestions to
represent a typical asset allocation and product mix:

(w,v) = (0, 0, .08, .05, .08, .56, .16, .07, 0, .4, .4, .3, .3, .3, .3). (29)

Other inputs reflect the results of parametric estimation and additional assumptions
made in Section 3. With the number of years N set at 1000, we obtain 1000 portfolio
gain/loss values from which we can estimate the distribution of the one-year relative
gain/loss using Monte Carlo methods. Applying VaR or TVaR to this distribution, we
obtain an estimate of EC as the percentage of reserve. An estimate of VaR is given by
the fifth worst-case scenario of the total loss and an estimate of TVaR is obtained by
averaging the five worst-case scenarios.

Let us summarize the results of multiple runs of simulation of 1000 years and com-
pare them for different values of β in Table 11 and Table 12. For simplicity, βj,r ≡ β
for all liability variables in one model. Results in Table 11 are based on the current
inputs in EC Inputs and Results.xlsm, changing β only. Table 12 contains the results
of similar calculations after applying the additional 1.8 factor to the standard deviation
of total annual claims in the worksheet Liability Inputs of the input file. Results of 10
runs with N = 1000 in each are presented in tables as averages and estimated stan-
dard deviations. As we see, a moderately conservative assumption in Table 12 does not
bring about substantial increase in the EC values without a change in asset assumption.
Also, the sensitivity of EC results to the values of parameter β is limited.

Further analysis of high-loss years in Asset/Liability Results of EC Inputs and Re-
sults.xlsm demonstrates that in some cases high losses occur due to high mortality and
morbidity, while in most cases they are driven by big dives in such investment cate-
gories as CMBS and junk bonds. In some cases it is a combination of two factors. This
gives an argument for the use of copula models directly addressing interdependence of
loss factors, especially in case of extreme events.
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Table 11: Economic capital calculation (1000 years).
MA parameter TVaR (st.dev.) VaR (st.dev.)
β = .1 -.100 (.020) -.076 (.013)
β = .5 -.101 (.027) -.070 (.011)
β = .99 -.098 (.016) -.072 (.009)

Table 12: Economic capital calculation with 1.8 loading(1000 years).
MA parameter TVaR VaR
β = .1 -.099 (.013) -.080 (.010)
β = .5 -.102 (.017) -.079 (.009)
β = .99 -.109 (.016) -.082 (.010)

5.3 Possible Modifications of the Model Inputs
The simulation from the previous section, resulting in the EC values in Table 11 and
Table 12, allows for customization at several different levels. The provided software
accepts changes to the inputs, which can reflect the individual experience of the model
user without serious adjustment of the code. The following changes can be entered
directly in the input file EC Inputs and Results.xlsm:

• The number of simulated years, N , can be chosen and entered in worksheet
Number of Years. With current settings, it takes less than 2 minutes on a standard
desktop computer to run 1000 simulations, and about 10 minutes to run 10, 000;

• The confidence level for VaR and TVaR is set at 99.5% to reflect 1 in 200 years
events, but can be adjusted in worksheet EC Results;

• Weights wj and vj can be adjusted to reflect the user’s asset portfolio allocation
and the product mix (worksheet Weights);

• Annual values of E(Cj,r),V ar(Cj,r), and L(0)
j can be chosen to reflect the in-

dividual liability profile of the end user in terms of annual expected loss and
total reserve amount for each line of business and cause of the loss (mortality,
morbidity, lapse). See worksheet Liability Inputs.

• Parameter β (worksheet Liability Inputs) can be adjusted in the interval 0 ≤ β <
1 to reflect the experience of the end user. β = 0 corresponds to month-to-month
independence, while the higher values of β represent higher month-to-month
autocorrelation.

One advantage of the model setting is the possibility to utilize monthly liability
data if they become available. These data may be used to estimate parametersE(Xj,r),
V ar(Xj,r) and βj,r for each j, r, and these estimates can serve as model inputs. If the
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credibility of these monthly loss data is limited, a Bayesian approach can be recom-
mended to make use of these data along with the initial model parameters, applied in
the previous subsection.

Finally, there exist further customization options. Each of these options requires
the user to make some changes to the code applied in the model simulation.

• Using marginal distributions for losses other than log-normal (for instance, com-
posite log-normal/Pareto models).

• Using copulas other than Student’s t-copula (e.g., hierarchical Archimedean cop-
ulas).

• Adding new classes to the asset portfolio or new products to the mix.

• If necessary, asset and liability variables can be updated on a daily basis, which
may be important when considering universal life products or variable annuities.

5.4 Model Assumptions and Simplifications
The following assumptions and simplifications have to be clarified in order to better
understand the scope and limitations of the suggested approach.

Assets:

• Barclay indices are used to represent a typical investment mix of an insurance
company.

• The last 15 years of data are used for the estimation of asset and copula parame-
ters to represent a low-interest environment.

• The monthly averages of daily settlement prices are used to estimate asset pa-
rameters and autocorrelations.

Liabilities:

• Three simple, traditional products are used to represent a small company’s offer-
ings.

• The products used are not overly sensitive to interest rates or asset values.

• The choice of Solvency II parameters as liability distribution drivers is somewhat
arbitrary.

• The values used for the correlation of assets and liabilities in matrix form is not
verifiable.

• Liability losses assume a degree of autocorrelation that was best estimate.
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• Modeled reserves are treated for simplicity as ’stationary state’ across time.
These factors should allow the assumption that reserve changes will be relatively
small compared to the model’s loss drivers. As a result, the change in reserve,
which is typically an income item, has been ignored for our purposes. This ap-
proach seems logical for traditional products, such as the sample products we
have used to illustrate the model framework.

• Calibration of liability distributions is based on a 1 in 200 year event severity.

• Reserve and claim relationships are based on simple product design and age
grouping.

• Experience and valuation assumptions are equivalent/simplified in some product
cases.

5.5 Model Validation
The platforms used, R Studio and Microsoft Excel, are widely used and assumed to be
both appropriate and, to a high degree, free of errors. No challenger or parallel models
were employed for the purpose of validating the software.

Input:

• Mortality and morbidity tables are taken from http://www.soa.org and assumed
valid;

• Solvency II parameters are widely accepted in the U.S. for baseline guidance by
actuaries;

• Industry conventional wisdom and best practice are relied upon to perform rea-
sonableness checks;

• Inspection of intermediate results by an actuary helps to provide a gut check on
ranges of inputs and intermediate result output, such as commutation functions
used to calculate reserves;

• Benchmarking of values to industry values is performed, such as reserves/1000
for the liability values in the model.

Output:

• EC values were compared to standard benchmarks, conventional wisdom and
ranges of results seen in practice;

• Sensitivity testing of EC results to changes in key liability assumption drivers
(such as level of assumed mortality and strength of autocorrelation parameters)
was performed and an inspection of the results demonstrated reasonable cause
and effect relationships.

Process:
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• Each sub-process was run separately and checked for reasonableness;

• Errors resulting from initial failed attempts at using model processes and sub-
processes were understood and corrected;

• R code was compared to other public domain code for best practice and mini-
mization of error;

• The simulation was run multiple times for N=1000 years per calculation on dif-
ferent computers, with results recorded in Table 11 and Table 12 demonstrating
numerical stability, and also for N=10,000 years for additional diagnostic pur-
poses;

• The simulation for N=1000 takes about 100 seconds on a typical laptop com-
puter, thus this sample size can be recommended;

• The developers did not attempt replication of model results using challenger
models and relied, instead, upon reasonableness of sub-process results and ag-
gregate process outputs produced;

• Ongoing monitoring is the validation step taken each time a model is updated and
rerun and should include some of the key validation steps performed during the
development stage. This is often performed by a person other than the developer.
The developers of this model assume that the end user takes on this responsibility.

Further model validation can be carried out in four ways:

• Sensitivity tests using admissible changes of liability inputs (reflecting more and
less conservative assumptions);

• Sensitivity tests using admissible changes in asset allocation and product mix;

• Analysis of the asset/liability outcomes for the contribution of certain asset and
liability classes to the critical values of overall loss in the extreme scenarios
provided in EC Inputs and Results.xlsm;

• Running a larger number of scenarios (years) (100,000 or 1,000,000).

In all four cases we are looking for a relative stability of the tail values and their
sensitivity to the changes of model inputs.
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