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Ivelin M. Zvezdov, M.Phil.1  

Sebastian Rath, Ph.D.2  
 

Abstract 

This paper’s purpose is to examine the intersection of research on the effects of insurance risk 
diversification and availability of big insurance data components for competitive underwriting 
and premium pricing. We study the combination of physical diversification by geography and 
insured natural peril with the complexity of aggregate structured insurance products, and how big 
historical and modeled data components impact product underwriting decisions. Under such 
market conditions, the availability of big data components facilitates accurate measurement of 
interdependencies among risks, as well as the definition of optimal and competitive insurance 
premium at the level of the firm and the policyholders. We extend the discourse to a notional 
microeconomy and examine the impact of diversification and insurance big data components on 
the potential for developing strategies for sustainable and economical insurance policy 
underwriting. We review concepts of parallel and distributed algorithmic computing for big data 
clustering, mapping and resource-reducing algorithms. 

 

Introduction 

This working paper will examine how big data and fast compute platforms solve some complex 
premium-pricing, portfolio-structuring and accumulation problems in the context of flood 
insurance markets. Our second objective is to measure the effects of geospatial insurance risk 
diversification through modeling of interdependencies and show that such measures impact 
single risk premium definition and its market cost. The single product case studies examine the 
pricing of insurance umbrella coverage. They are selected to address scenarios relevant to current 
insurance market conditions under intense premium competition. We extend the discourse to a 
microeconomy of multiple policyholders and aim to generalize some findings on economies of 
scale and diversification. The outcomes of all case studies and theoretical analysis depend on the 
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availability of big insurance data components for modeling and pricing workflows. The quality, 
usability and computational cost of such data components determine their direct impact on the 
underwriting and pricing process and on definition of the single risk cost of insurance.  

 

1.0 Pricing Aggregate Umbrella Policies 

Insurers are competing actively for insureds’ premiums and looking for economies of scale to 
offset and balance premium competition and thus develop more sustainable long-term 
underwriting strategies. While writing competitive premium policies and setting up flexible 
contract structures, insurers are mindful of risk concentration and the lower bounds of fair 
technical pricing. Structuring of aggregate umbrella policies lends itself to underwriting practices 
of larger scales in market share and diversification. Only large insurers have the economies of 
scale to offer such products to their clients. 

Premium pricing of umbrella and global policies relies on both market conditions and a 
mathematical modeling argument. On the market and operational side, the insurer relies on the 
lower cost of umbrella products due to efficiencies of scale in brokerage, claims management, 
administration and, even, in the computational scale-up of the modeling and pricing internal 
functions of its actuarial departments. In our study, we will first focus on the statistical modeling 
argument, then we will define big data components, which allow for solving such policy 
structuring and pricing problem.  

We first set up the case study on a smaller scale in context of two risks—with insured limits for 
flood of 90 million and 110 million respectively. These risks are priced for combined river/rain 
and storm surge flood coverage, first with both single limits separately and independently and 
then in an aggregate umbrella insurance product with a combined limit of 200 million, as seen in 
Equation (1.0) and Table 1.  

 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 (200𝑀𝑀) = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 1 (90𝑀𝑀) + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 2 (110𝑀𝑀). (1.0) 

 

Table 1. Policy Setup and Limit Coverage 
Policy Setup Limit Coverage 

Policy 1, π(S) 90M 

Policy 2, π(Q) 110M 

Umbrella, π(S + Q) 200M 

 

The two risks are owned by a single insured and are located in a historical flood zone, in 
geospatial proximity to each other, of less than 1 kilometer, as seen in Figure 1.  
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Figure 1. Geospatial Location of Insured Risk With Less Than 1 Kilometer of Proximity 

 

For premium pricing, we assume a traditional approach dependent on modeled expected values 
of insured loss and standard deviation of loss. See Figure 2.  

 
Figure 2. Basic Insurance Premium Components and Construction 
 

 

 

 

 

To set the statistical mechanics of the case study for both risks, we have a modeled flood 
insurance loss data samples 𝑄𝑄𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎 𝑆𝑆𝑡𝑡, respectively, for both risks from a stochastic simulation, 
𝑇𝑇. Modeled insured losses have an expected value 𝐸𝐸[. ] and a standard deviation 𝜎𝜎[. ], which 
define a standard policy premium of π(. ). 

When both policies’ premiums are priced independently, by the standard deviation pricing 
principle we have: 

 
π(𝑆𝑆𝑡𝑡) = 𝐸𝐸[𝑆𝑆𝑡𝑡] + 𝜎𝜎[𝑆𝑆𝑡𝑡], 

π(𝑆𝑆𝑡𝑡) = 𝐸𝐸[𝑆𝑆𝑡𝑡] + 𝜎𝜎[𝑆𝑆𝑡𝑡]. 

(1.1) 

 

With non-negative loadings, it follows that: 

 

Risk 1 Limit  
90M 

Risk 2 Limit 
 110M 

Loss Model 
Risk Loading Std. Dev  

Expected 
Value 

Mean Loss Base 

Premium 

Top Load 
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π(𝑆𝑆𝑡𝑡) ≧ 𝐸𝐸[𝑆𝑆𝑡𝑡], 

π(𝑄𝑄𝑡𝑡) ≧ 𝐸𝐸[𝑄𝑄𝑡𝑡]. 

(2.0) 

 

Since both risks are owned by the same insured, we aggregate the two standard premium 
equations, using traditional statistical accumulation principles for expected values and standard 
deviations of loss: 

 
π(𝑄𝑄𝑡𝑡) + π(𝑆𝑆𝑡𝑡) = 𝐸𝐸[𝑆𝑆𝑡𝑡] + 𝜎𝜎[𝑆𝑆𝑡𝑡] + 𝐸𝐸[𝑄𝑄𝑡𝑡] + 𝜎𝜎[𝑄𝑄𝑡𝑡], 

π(𝑄𝑄𝑡𝑡) + π(𝑆𝑆𝑡𝑡) = 𝐸𝐸[𝑆𝑆𝑡𝑡 + 𝑄𝑄𝑡𝑡] + 𝜎𝜎[𝑆𝑆𝑡𝑡] + 𝜎𝜎[𝑄𝑄𝑡𝑡]. 

(3.0) 

 

The theoretical joint insured loss distribution function 𝑓𝑓𝑆𝑆,𝑄𝑄(𝑆𝑆𝑡𝑡,𝑄𝑄𝑡𝑡) of the two risks will have an 
expected value of insured loss: 

 
𝐸𝐸[𝑆𝑆𝑡𝑡 + 𝑄𝑄𝑡𝑡] = 𝐸𝐸[𝑆𝑆𝑡𝑡] + 𝐸𝐸[𝑄𝑄𝑡𝑡], (4.0) 

 
and a joint theoretical standard deviation of insured loss: 

 
𝜎𝜎[𝑆𝑆𝑡𝑡 + 𝑄𝑄𝑡𝑡] = �𝜎𝜎2[𝑆𝑆𝑡𝑡] + 𝜎𝜎2[𝑄𝑄𝑡𝑡] + 2𝜌𝜌𝜌𝜌[𝑆𝑆𝑡𝑡]𝜎𝜎[𝑄𝑄𝑡𝑡]. (4.1) 

 

We use further these aggregation principles to express the sum of two single risks premiums, 
π(𝑄𝑄𝑡𝑡),π(𝑆𝑆𝑡𝑡), as well as to derive a combined premium π(𝑄𝑄𝑡𝑡 + 𝑆𝑆𝑡𝑡) for an umbrella coverage 
product insuring both risks with equivalency in limits as in Equation (1.0). An expectation for 
full equivalency in premium definition produces the following equality: 

 
π(𝑄𝑄𝑡𝑡 + 𝑆𝑆𝑡𝑡) =  𝐸𝐸[𝑆𝑆𝑡𝑡 + 𝑄𝑄𝑡𝑡] + �𝜎𝜎2[𝑆𝑆𝑡𝑡] + 𝜎𝜎2[𝑄𝑄𝑡𝑡] + 2𝜌𝜌𝜌𝜌[𝑆𝑆𝑡𝑡]𝜎𝜎[𝑄𝑄𝑡𝑡] 

= π(𝑄𝑄𝑡𝑡) + π(𝑆𝑆𝑡𝑡). 

(4.2) 

 

The expression introduces a correlation factor 𝜌𝜌 between modeled insured losses of the two 
policies. In our case study, this correlation factor specifically expresses dependencies between 
historical and modeled losses for the same insured peril due to geospatial distances. Such 
correlation factors are derived by algorithms that measure dependencies of historical and 
modeled losses on their sensitivities to geospatial distances among risks. In this article, we will 
not delve into the definition of such geospatial correlation algorithms. Three general cases of 



5 
 

dependence relationships among flood risks due to their geographical situation and distances are 
examined in our article: full independence, full dependence and partial dependence. 

 
2.0 Subadditivity, Dependence and Diversification 

2.1 Two Boundary Cases of Fully Dependent and Fully Independent Risks  

In the first boundary case, where we study full dependence between risks, expressed with a unit 
correlation factor, we have from first statistical principles that the theoretical sum of the standard 
deviations of loss of the fully dependent risks is equivalent to the standard deviation of the joint 
loss distribution of the two risks combined, as defined in Equation (4.1).  

 
𝜎𝜎[𝑆𝑆𝑡𝑡 + 𝑄𝑄𝑡𝑡] = �𝜎𝜎2[𝑆𝑆𝑡𝑡] + 𝜎𝜎2[𝑄𝑄𝑡𝑡] + 2𝜎𝜎[𝑆𝑆𝑡𝑡]𝜎𝜎[𝑄𝑄𝑡𝑡] = 𝜎𝜎[𝑆𝑆𝑡𝑡] + 𝜎𝜎[𝑄𝑄𝑡𝑡]. (4.3) 

 

For expected values of loss, we already have a known theoretical relationship between single 
risks’ expected insurance loss and umbrella product expected loss in Equation (4.0). The logic of 
summations and equalities for the two components in standard premium definition in equations 
(4.0) and (4.3) leads to deriving a relationship of proven full additivity in premiums between the 
single policies and the aggregate umbrella product, as seen in Equation (4.2), and shortened as: 

 
π(𝑄𝑄𝑡𝑡 + 𝑆𝑆𝑡𝑡) = π(𝑄𝑄𝑡𝑡) + π(𝑆𝑆𝑡𝑡). (4.4) 

 

Some underwriting conclusions are evident. When structuring a combined umbrella product for 
fully dependent risks, in very close to identical geographical space, same insured peril and line of 
business, the price of the aggregated umbrella product should approach the sum of single risk 
premiums priced independently. The absence of diversification in geography and insured 
catastrophe peril prevents any significant opportunities for cost savings or competitiveness in 
premium pricing. The summation of riskiness form single policies to aggregate forms of products 
is linear and co-monotonic. Economies of market share scale do not play a role in highly 
clustered and concentrated pools of risks, where diversification is not achievable and interrisk 
dependencies are close to perfect. In such scenarios, the impact of big data components to 
underwriting and pricing practices is not as prominent because formulation of standard premiums 
for single risks and aggregated products could be achieved by theoretical formulations.  

In our second boundary case of full and perfect independence, when two or more risks with 
two separate insurance limits are priced independently and separately, the summation of their 
premiums is still required for portfolio accumulations by line of business and geographic and 
administrative region. This premium accumulation task or “roll-up” of fully independent risks is 
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accomplished by practitioners accordingly with the linear principles of Equation (3.0). However, 
if we are to structure an aggregate umbrella cover for these same single risks with an aggregated 
premium of π(𝑄𝑄𝑡𝑡 + 𝑆𝑆𝑡𝑡) , the effect of statistical independence expressed with a zero correlation 
factor will reduce Equation (3.0) to Equation (5.0):  

 
π(𝑄𝑄𝑡𝑡 + 𝑆𝑆𝑡𝑡) =  𝐸𝐸[𝑆𝑆𝑡𝑡 + 𝑄𝑄𝑡𝑡] + �𝜎𝜎2[𝑆𝑆𝑡𝑡] + 𝜎𝜎2[𝑄𝑄𝑡𝑡]. (5.0) 

 

Full independence among risks more strongly than any other case supports the premium 
subadditivity principle, which is stated in Equation (6.0). 

 
π(𝑄𝑄𝑡𝑡 + 𝑆𝑆𝑡𝑡) ≦ π(𝑄𝑄𝑡𝑡) + π(𝑆𝑆𝑡𝑡). (6.0) 

 

An expanded expression of the subadditivity principle is easily derived from the linear 
summation of premiums in Equation (3.0) and the expression of the combined single insurance 
product premium in Equation (5.0). 

Some policy and premium underwriting guidelines can be derived from this regime of full 
statistical independence. Under conditions of full independence, when two risks are priced 
independently and separately, the sum of their premiums will always be larger than the premium 
of an aggregate umbrella product covering these same two risks. The physical and geographic 
characteristics of full statistical independence for modeled insurance loss are large geospatial 
distances and independent insured catastrophe perils and business lines. In practice, this is 
generally defined as insurance risk portfolio diversification by geography, line and peril. In 
insurance product terms, we proved that diversification by geography, peril and line of business, 
which are the physical prerequisites for statistical independence, allow structuring and pricing an 
aggregate umbrella product with a premium less than the sum of the independently priced 
premiums of the underlying insurance risks. 

In this case, unlike with the case of full dependence, big data components have a computing and 
accuracy function to play in the underwriting and price-definition process. Once the 
subadditivity of the aggregate umbrella product premium as in Equation (6.0) is established, the 
premium is back-allocated to the single component risks covered by the insurance product. This 
is done to measure the relative riskiness of the assets under the aggregate insurance coverage and 
each risk’s individual contribution to the formation of the aggregate premium. Back-allocation is 
described further in the article in the context of a notional microeconomy case.  
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2.2 Less Than Fully Dependent Risks Scenario 

In our case study, we have geospatial proximity of the two insured risks in a known flood zone 
with measured and available averaged historical flood intensities, which leads to a measurable 
statistical dependence of modeled insurance loss. We express this dependence with a computed 
correlation factor in the interval [0 < 𝜌𝜌′ < 1.0]. 

Partial dependence with a correlation factor 0 < 𝜌𝜌′ < 1.0 has immediate impact on the 
theoretical standard deviation of combined modeled loss, which is a basic quantity in the 
formulation of risk and loading factors for premium definition.  

 

𝜎𝜎[𝑆𝑆𝑡𝑡 + 𝑄𝑄𝑡𝑡] = �𝜎𝜎2[𝑆𝑆𝑡𝑡] + 𝜎𝜎2[𝑄𝑄𝑡𝑡] + 2𝜌𝜌′𝜎𝜎[𝑆𝑆𝑡𝑡]𝜎𝜎[𝑄𝑄𝑡𝑡]  ≦ 𝜎𝜎[𝑆𝑆𝑡𝑡] + 𝜎𝜎[𝑄𝑄𝑡𝑡].  
(6.5) 

 

This leads to redefining the equality in Equation (4.3) to an expression of inequality between the 
premium of the aggregate umbrella product and the independent sum of the single risk 
premiums, as in the case of complete independence.  

 
π(𝑄𝑄𝑡𝑡 + 𝑆𝑆𝑡𝑡) = 𝐸𝐸[𝑆𝑆𝑡𝑡 + 𝑄𝑄𝑡𝑡] + �𝜎𝜎2[𝑆𝑆𝑡𝑡] + 𝜎𝜎2[𝑄𝑄𝑡𝑡] + 2𝜌𝜌′𝜎𝜎[𝑆𝑆𝑡𝑡]𝜎𝜎[𝑄𝑄𝑡𝑡] 

≦ π(𝑄𝑄𝑡𝑡) + π(𝑆𝑆𝑡𝑡). 

(7.0) 

 

The principle of premium subadditivity, Equation (6.0), as in the case of full independence, again 
comes into force. The expression of this principle is not as strong with partial dependence as 
with full statistical independence, but we can clearly observe a theoretical ranking of aggregate 
umbrella premiums π(𝑄𝑄𝑡𝑡 + 𝑆𝑆𝑡𝑡) in the three cases reviewed so far:  

 
 π 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ≦ π 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ≦ π 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷. (7.1) 

 

This theoretical ranking is further confirmed in the next section with computed numerical results.  

Less than full dependencies (i.e., partial dependencies among risks) could still be viewed as a 
statistical modeling argument for diversification in market share geography, line of business and 
insured peril. Partial but effective diversification still offers an opportunity for competitive 
premium pricing. In insurance product and portfolio terms, our study proves that partial or 
imperfect diversification by geography affects the sensitivity of premium accumulation and 
allows for cost savings in premium for aggregate umbrella products vs. the summation of 
multiple single risk policy premiums. 
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3.0 Numerical Results of Single Risk and Aggregate Premium Pricing Cases 

In our flood risk premium study, we modeled and priced three scenarios, using classical formulas 
for a single risk premium in Equation (1.0) and for umbrella policies in Equation (7.0). In our 
first scenario, we price each risk separately and independently with insured limits of 90 million 
and 110 million. In the second and third scenarios, we price an umbrella product with a limit of 
200 million, in three subcases with {1.0, 0.3 𝑎𝑎𝑎𝑎𝑎𝑎 0.0} correlation factors, respectively, to 
represent full dependence, partial dependence and full independence of modeled insured loss. 
We use stochastic modeled insurance flood losses computed with high geospatial granularity of 
30 meters. See Table 2.  

 
Table 2. Numerical Results of Premium Pricing Under Three Dependence Structures 

Insured Limit(s) Policy & Premium Set Up Premium Dependence & Additivity 
90M Policy 1: π(1) 512K  

110M Policy 2: π(2) 725K  

200M Premium sum: π(1) + π(2) 1.24M Full dependence & additivity 
200M Umbrella: π(1 + 2): 

100% correlation 
1.24M Full dependence & additivity 

200M Umbrella: π(1 + 2): 
30% correlation 

1.02M Partial dependence & subadditivity 

200M Umbrella: π(1 + 2): 
0% correlation 

0.9M Full independence & subadditivity 

 

The numerical results of our experiment fully support the conclusions and guidelines we earlier 
derived from theoretical statistical relationships. For fully dependent risks in close proximity, the 
sum of single risk premiums approaches the price of an umbrella product, which is priced with 
1.0 (100%) correlation factor. This is the stochastic relationship of full premium additivity. For 
partially dependent risks, the price of a combined product, modeled and priced with a 0.3 (30%) 
correlation factor, could be less than the sum of single risk premiums. For fully independent 
risks, priced with a 0 (0.0%) correlation factor, the price of the combined insurance cover will 
further decrease to the price of an umbrella on partially dependent risks (30% correlation). 
Partial dependence and full independence support the stochastic ordering principle of premium 
subadditivity. The premium ranking relationship in Equation (7.1) is strongly confirmed by these 
numerical pricing results. 

Less than full dependence among risks, which is a very likely and practical measurement in real 
insurance umbrella coverage products, could still be viewed as the statistical modeling argument 
for diversification in market share geography. Partial and incomplete dependence theoretically 
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and numerically supports the argument that partial but effective diversification offers an 
opportunity for competitive premium pricing. 

 

4.0 Theoretical Expansion to a Single Firm Microeconomy Case  

We expand the discourse to a simple theoretical microeconomy and examine if the same 
principles derived for the aggregate umbrella insurance product still hold on the larger scale of 
an insurance firm. In a notional economy with {1 … 𝑡𝑡𝑡𝑡…𝑁𝑁} insurance risks 𝑟𝑟1,𝑁𝑁 and 
policyholders respectively, we have only one insurance firm, which at time 𝑇𝑇 does not have an 
information data set 𝜃𝜃𝑇𝑇 about dependencies among per-risk losses. Each premium is estimated by 
the traditional standard deviation principle in Equation (1.1). For the same time period 𝑇𝑇, the 
insurance firm collects a total premium 𝜋𝜋𝑇𝑇[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] equal to the linear sum of all {1 … 𝑡𝑡𝑡𝑡…𝑁𝑁} 
policy premiums 𝜋𝜋𝑇𝑇[𝑟𝑟𝑁𝑁] in the notional economy: 

 
𝜋𝜋𝑇𝑇[𝑟𝑟1] + … + 𝜋𝜋𝑇𝑇[𝑟𝑟𝑁𝑁] = ∑ 𝜋𝜋𝑇𝑇𝑁𝑁

𝑖𝑖=1 = 𝜋𝜋𝑇𝑇[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡]. (8.0) 
 

There is full additivity in portfolio premiums, and, because of unavailability of data on interrisk 
dependencies for modeling, the insurance firm cannot take advantage of competitive premium 
cost savings due to market share scale and geographical distribution and diversification of the 
risks in its book of business. For coherence, we assume all insurance risks and policies belong to 
the same line of business and cover the same insured natural peril—flood—so that the only 
insurance risks diversification possible is due to insurance risk independence derived from 
geospatial distances. A full premium additivity equation similar to an aggregate umbrella product 
premium seen in Equation (3.0), extended for the case of the total premium of the insurance firm 
in our microeconomy, is composed in Equation (9.0): 

 
𝜋𝜋𝑇𝑇[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] = 𝜋𝜋𝑇𝑇[𝑟𝑟1] + … + 𝜋𝜋𝑇𝑇[𝑟𝑟𝑁𝑁] = 𝐸𝐸[𝑟𝑟1 + ⋯+ 𝑟𝑟𝑁𝑁] + 𝜎𝜎[𝑟𝑟1] + ⋯+ 𝜎𝜎[𝑟𝑟𝑁𝑁]. (9.0) 

 

In the next time period 𝑇𝑇 + 1, the insurance firm acquires a data set 𝜃𝜃𝑇𝑇+1, which allows it to 
model geospatial dependencies among risks and to identify fully dependent, partially dependent 
and fully independent risks. The dependence structure is expressed and summarized in a [𝑁𝑁 𝑥𝑥 𝑁𝑁] 
correlation matrix: 𝜌𝜌𝑖𝑖,𝑁𝑁. Traditionally, full independence between any two risks is modeled with 
a zero correlation factor, and partial dependence is modeled by a correlation factor less than one. 
With this new information, we can extend the insurance product expression in Equation (7.0) to 
the total accumulated premium 𝜋𝜋𝑇𝑇+1[𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] of the insurance firm at time 𝑇𝑇 + 1: 
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∑ 𝜋𝜋𝑇𝑇+1𝑁𝑁
𝑖𝑖=1 = 𝐸𝐸[𝑟𝑟1 + ⋯+ 𝑟𝑟𝑁𝑁] + �∑ 𝜎𝜎2[𝑟𝑟𝑖𝑖]1,𝑁𝑁 + ∑ 2𝜌𝜌𝑖𝑖,𝑁𝑁𝜎𝜎[𝑟𝑟𝑖𝑖]𝜎𝜎[𝑟𝑟𝑁𝑁]1,𝑁𝑁 . (10.0) 

 

The impacts of full independence and partial dependence, which are inevitably present in a full 
insurance book of business, guarantee that the subadditivity principle for premium accumulation 
comes into effect. In our case study, subadditivity has two related expressions. Between the two 
time periods, the acquisition of the dependence data set 𝜃𝜃𝑇𝑇, which is used for modeling and 
definition of the correlation structure 𝜌𝜌𝑖𝑖,𝑁𝑁, provides that a temporal subadditivity or inequality 
between the total premiums of the insurance firm can be justified in Equation (10.1): 

 
∑ 𝜋𝜋𝑇𝑇+1𝑁𝑁
𝑖𝑖=1 ≤ ∑ 𝜋𝜋𝑇𝑇𝑁𝑁

𝑖𝑖=1 . (10.1) 
 

It is undesirable for any insurance firm to seek lowering its total cumulative premium 
intentionally because of reliance on diversification. However, an underwriting guidelines’ 
implication could be that after the total firm premium is accumulated with a model taking 
account of interrisk dependencies, this total monetary amount can be back-allocated to individual 
risks and policies and thus provide a sustainable competitive edge in pricing. The business 
function of diversification and taking advantage of its consequent premium cost savings is 
achieved through two statistical operations: accumulating pure flood premium with a correlation 
structure, then back-allocating the total firms’ premium down to single contributing risk 
granularity. A backwardation relationship for the back-allocated single risk and single policy 
premium 𝜋𝜋𝑇𝑇+1′ [𝑟𝑟𝑁𝑁] can be derived with a standard deviations’ proportional ratio. This per-risk 
back-allocation ratio is constructed from the single risk standard deviation of expected loss 
𝜎𝜎𝑇𝑇+1[𝑟𝑟𝑁𝑁] and the total linear sum of all per-risk standard deviations ∑ 𝜎𝜎𝑇𝑇+1[𝑟𝑟𝑁𝑁]𝑁𝑁

𝑖𝑖=1  in the 
insurance firm’s book of business: 

 

𝜋𝜋𝑇𝑇+1′ [𝑟𝑟𝑁𝑁] = ∑ 𝜋𝜋𝑇𝑇+1′𝑁𝑁
𝑖𝑖=1 [𝑟𝑟𝑁𝑁] � 𝜎𝜎𝑇𝑇+1[𝑟𝑟𝑁𝑁]

∑ 𝜎𝜎𝑇𝑇+1[𝑟𝑟𝑁𝑁]𝑁𝑁
𝑖𝑖=1

�. (11.0) 

 

From the temporal subadditivity inequality between total firm premiums in Equation (10.1) and 
the back-allocation process for total premium ∑ 𝜋𝜋𝑇𝑇+1′𝑁𝑁

𝑖𝑖=1 [𝑟𝑟𝑁𝑁] down to single risk premium in 
Equation (11.0), it is evident there are economies of scale and cost in insurance policy 
underwriting between the two time periods for any arbitrary single risk 𝑟𝑟𝑁𝑁. These cost savings 
are expressed in Equation (12.0). 

 
𝜋𝜋𝑇𝑇+1′ [𝑟𝑟𝑁𝑁] ≤ 𝜋𝜋𝑇𝑇[𝑟𝑟𝑁𝑁]. (12.0) 
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In our case study of a microeconomy and one notional insurance firms’ portfolio of one insured 
peril, namely flood, these economies of premium cost are driven by geospatial diversification 
among the insured risks. We support this theoretical discourse with a numerical study. 

4.1 Notional Flood Insurance Portfolio Case Study 

We construct two notional business units each containing 10 risks and, respectively, 10 insurance 
policies. The risks in both units are geospatially clustered in high intensity flood zones—Jersey 
City in New Jersey, “Unit NJ,” and Baton Rouge in Louisiana, “Unit BR.” For each business 
unit, we perform two numerical computations for premium accumulation under two dependence 
regimes. Each unit’s accumulated fully dependent premium is computed by Equation (9.0). 
Each unit’s accumulated partially dependent premium, modeled with a constant correlation 
factor of 0.6 (60%), between any two risks, for both units is computed by Equation (10.0). The 
total insurance firm’s premium under both cases of full dependencies and partial dependence is 
simply a linear sum, “business unit premiums” roll-up to the book total. See Table 3.  

 
Table 3. Results for Accumulated Premium for Two Business Units and the Portfolio Total 
Total Insurance Firm Premium 

 

Fully dependent 
premium 

Partially dependent 
premium 

Unit NJ 37.8M 32.5M 

Unit BR 27.1M 23.9M 

Total Book 64.9M 56.4M 

  

In all of our case studies, we have focused continuously on the impact of measuring geospatial 
dependencies and their interpretation and usability in risk and premium diversification. For the 
actuarial task of premium accumulation across business units, we assume the insurance firm will 
simply roll-up unit total premiums and will not look for competitive pricing as a result of 
diversification across business units. This practice is justified by underwriting and pricing 
guidelines being managed somewhat autonomously by the geoadmin business unit, and premium 
and financial reporting being done in the same manner.  

In our numerical case study, we prove that the theoretical inequality in Equation (10.1), which 
defines temporal subadditivity of premium with and without dependence modeled impact, is 
maintained. Total business unit premium computed without modeled correlation data and under 
assumption of full dependence ∑ 𝜋𝜋𝑇𝑇𝑁𝑁

𝑖𝑖=1  always exceeds the unit’s premium under partial 
dependence ∑ 𝜋𝜋𝑇𝑇+1𝑁𝑁

𝑖𝑖=1  computed with acquired and modeled correlation factors:  
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∑ 𝜋𝜋𝑇𝑇+1(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑁𝑁𝑁𝑁)𝑁𝑁
𝑖𝑖=1 ≤ ∑ 𝜋𝜋𝑇𝑇(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑁𝑁𝑁𝑁)𝑁𝑁

𝑖𝑖=1 , 

∑ 𝜋𝜋𝑇𝑇+1(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐵𝐵𝐵𝐵)𝑁𝑁
𝑖𝑖=1 ≤ ∑ 𝜋𝜋𝑇𝑇(𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐵𝐵𝐵𝐵)𝑁𝑁

𝑖𝑖=1 . 

 

 

This justifies performing back-allocation in both business units, using the procedure in Equation 
(11.0), of the total premium ∑ 𝜋𝜋𝑇𝑇+1𝑁𝑁

𝑖𝑖=1  computed under partial dependence. In this way, 
competitive cost savings can be distributed down to single risk premium. In Table 4, we show 
the results of this back-allocation procedure for all single risks in both business units.  

 
Table 4. Single Risk Premiums by Unit Under Two Correlation Factors 

NJ Risks 

Fully 
Dependent 
Premiums 

Partially 
Dependent 
Premiums BR Risks 

Fully 
Dependent 
Premiums 

Partially 
Dependent 
Premiums 

1 1,373,677 1,314,438 11 496,449 323,495 
2 790,016 750,127 12 7,225,247 6,601,950 
3 1,225,628 1,160,409 13 7,225,247 6,601,950 
4 3,837,894 3,391,682 14 147,973 97,815 
5 3,837,894 3,391,682 15 267,605 169,304 
6 9,533,304 8,560,567 16 812,826 579,865 
7 7,897,792 6,278,738 17 232,896 148,851 
8 7,871,039 6,253,646 18 10,155,420 9,082,536 
9 181,688 174,465 19 113,118 80,000 

10 1,241,295 1,203,113 20 378,275 242,799 
Total unit 37,790,226 32,478,869 

 
27,055,056 23,928,565 

 

For each single risk, we observe the per-risk premium inequality in Equation (12.0) is maintained 
by the numerical results. Partial dependence, which can be viewed as the statistical modeling 
expression of imperfect insurance risk diversification, proves it could lead to opportunities for 
competitive premium pricing and premium cost savings for the insured on a per-risk and per-
policy cost savings.  

4.2 Premium Mapping and Quantile Pricing  

The pure technical insurance premium can be expressed as a value at risk (VaR) or tail value at 
risk (TVaR) metric computed at exceedance probability α from the full insurance loss 
distribution 𝑆𝑆𝑛𝑛 of each insured risk 𝑟𝑟𝑛𝑛, such that 

 
𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑆𝑆𝑛𝑛) = inf{𝑠𝑠|𝑃𝑃(𝑆𝑆𝑛𝑛 > 𝑠𝑠)1 − 𝛼𝛼}, (13.0) 
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𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼(𝑆𝑆𝑛𝑛) = 1
1−𝛼𝛼 ∫ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆𝑛𝑛)𝑑𝑑𝑑𝑑1

𝛼𝛼 . (13.1) 

 

For our microeconomy case study, we map each risk premium absolute value, partially 
dependent and back-allocated from Table 4, to a VaR and TVaR value from the full risk 
insurance loss distribution, as seen in Table 5. 

 
Table 5. Back-Allocated Dependent Single Risk Premiums Mapped to VaR and TVaR 

NJ Risks VaR α TVaR α Premiums BR Risks VaR α TVaR α Premiums 
1 0.0037 0.0511 1,314,438 11 0.0910 0.2969 323,495 

2 0.0054 0.0489 750,127 12 0.0050 0.0600 6,601,950 
3 0.0121 0.0545 1,160,409 13 0.0050 0.0600 6,601,950 
4 0.0236 0.1045 3,391,682 14 0.0884 0.2927 97,815 
5 0.0235 0.1045 3,391,682 15 0.0987 0.3198 169,304 
6 0.0202 0.0405 8,560,567 16 0.0692 0.2294 579,865 
7 0.0622 0.1712 6,278,738 17 0.0904 0.3148 148,851 
8 0.0622 0.1722 6,253,646 18 0.0078 0.0687 9,082,536 
9 0.0117 0.0432 174,465 19 0.0718 0.2359 80,000 

10 0.0032 0.0454 1,203,113 20 0.0901 0.3106 242,799 
Total line 0.0205 0.0738 32,478,869   0.0069 0.1675 23,928,565 

 

In theoretical quantile premium pricing practices, where the policy premium is derived purely 
from a VaR or TVaR values, exceedance probability α becomes a data component for price 
definition.  

 
𝜋𝜋𝑇𝑇[𝑟𝑟𝑁𝑁] = 1

1−𝛼𝛼 ∫ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑆𝑆𝑛𝑛)𝑑𝑑𝑑𝑑1
𝛼𝛼 . (13.2) 

 

For the quantile premium to approach the traditional premium computed from expected value 
and standard deviation as in Equation (1.1), the exceedance probability α in the premium pricing 
formula in Equation (13.2) needs to vary significantly by each insured risk. This may create an 
issue for practitioners when such probability tolerance is defined by risk in underwriting 
guidelines and will not stay constant for the whole book of business or unit. Furthermore, we 
proved that to measure dependencies and diversification for an insurance book of business (see 
Equation 12.0), single policies’ premiums need to be derived through back-allocation from a 
total accumulated dependent line/unit premium, through a probabilistic technique, as we do in 
Equation (11.0), using a standard deviation ratio. Still, the exceedance probability of an 
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insurance premium mapped as a VaR and TVaR metric is practical and very useful in capital 
reserving tasks. It identifies scenarios with a probability weight 𝛼𝛼 where policy loss in a single 
scenario, VaR, or on average, TVaR, could exceed the policy premium:  

 
𝜋𝜋𝑇𝑇[𝑟𝑟𝑁𝑁] ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝛼𝛼(𝑆𝑆𝑛𝑛) ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼(𝑆𝑆𝑛𝑛).  

 

The data scale/size dimension of the big data component to support such a task at a portfolio and 
business unit level is the availability of the full per-risk insurance loss simulations. The 
frequency dimension of the big data component is contained in updating and preserving full 
insurance loss simulations for every task, as the practitioner varies underwriting parameters such 
as load factors or exceedance probability thresholds.  

 

5.0 Functions and Algorithms for Insurance Data Components   

5.1 Definition of Insurance Big Data Components   

Large insurance data components facilitate and practically enable the actuarial and statistical 
tasks of measuring dependencies, modeled loss accumulations and back-allocation of total 
business unit premium to single risk policies. For this study, our definition of big insurance data 
components covers historical and modeled data at high geospatial granularity, structured in up to 
1 million simulation geospatial maps. For modeling of a single insurance product for a single or 
few insured risks, a single map can contain a few hundred historical and modeled physical 
measure data points, such as water depth in the case of flood insurance. For a large book of 
business or a portfolio simulation, one map may contain millions of such data points. Time 
complexity is another feature of big data. Global but structured and distributed data sets are 
updated asynchronously and oftentimes without a schedule, depending on scientific and business 
requirements and computational resources. Thus such big data components have a critical and 
indispensable role in defining competitive premium cost savings for the insureds, which 
otherwise may not be found sustainable by the policy underwriters and the insurance firm.  

5.2 Intersections of Exposure, Physical and Modeled Simulated Data Sets 

Fast compute and big data platforms are designed to provide various complex and 
computational-resource demanding geospatial modeling and analysis tasks. One such 
fundamental task is the projection of an exposure map of insured risks and computing of its 
intersection with multiple simulated stochastic flood intensity scenarios and geophysical 
properties maps containing attributes such as coastal and river banks elevations and distances to 
water bodies. Such big data algorithms will typically be performed as a first step in spatial 
caching and indexing of all latitude and longitude geocoded units and grid-cells with any-and-all 
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attributes relevant to the required intersection definition of insured risk exposure and modeled 
stochastic flood intensity. Geospatial interpolation is also employed to compute and adjust peril 
intensities to distances and geophysical elevations of the insured risks. In a second step, a 
distance-based computation between indexes with insured risk attributes and those with modeled 
intensity attributes derives the intersection of the scenario simulation and the insured risks map. 
Further data operations and analytics are performed only on this smaller data subset.  

5.3 Reduction and Optimization Through Mapping and Parallelism  

One relevant definition of big data to our own study is data sets that are too large and too 
complex to be processed by traditional database technologies and algorithms. In principle, 
moving data between processes and algorithms or between platforms is the most computationally 
expensive task in solving big geospatial scale problems. Two such tasks in today’s insurance 
firms’ workflow are modeling and measuring interrisk dependencies and diversification within 
an insurance portfolio. The cost and expense of big geospatial solutions is magnified by the size 
of required data sets typically being distributed across multiple hard physical computational 
environments as a result of their large scale and structure. The fundamental solution is to achieve 
distributed optimization, which is constructed by a sequence of algorithms. As a first step, a 
mapping and splitting algorithm will divide large data sets into subsets and perform statistical 
and modeling computations on the smaller subsets. In our computational case study for flood 
insurance, the smaller data chunks represent insurance risks and policies in geophysically 
dependent zones, such as river basins and coastal segments. The smaller data sets are processed 
as smaller subproblems in parallel by assigned and sufficiently managed appropriate 
computational resources. In our case study, following these principles, we solve smaller scale 
and chunked data set computations for flood intensity and then for modeling and estimating of 
fully simulated and probabilistic insurance loss. Once the cost-effective subset operations are 
complete on the smaller subsets, a second algorithm will collect and map together the results of 
the first stage compute for consequent next tier and higher-level operations and data analytics. 
This process can be seen in Figure 3. 
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Figure 3. Distributed Computational Resources, Storage and Data Grid Framework 

 

 

For single insurance products, business units and portfolios, an ordered accumulation of risks is 
achieved via mapping and controlling the order by scale of the strength, or lack thereof, of 
interrisk dependencies. Data sets and algorithmic tasks with identical characteristics could be 
grouped together and resources for their processing significantly reduced by avoiding replication 
or repetition of computational tasks, which have already been mapped and now can be reused. 
Post-analytics and post-processed data could also be distributed on different physical storage 
capacities by a secondary scheduling algorithm, which intelligently allocates chunks of modeled 
and post-processed data to available storage resources. See Figure 4. This family of techniques is 
generally known as MapReduce. 
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Figure 4. Conceptual View of MapReduce Algorithm in Loss Estimation Analytics 

 

 

In our flood risk modeling case studies, one application of this family of optimization algorithms 
is found very appropriately in computing intersections and reducing dimensionality of big 
geospatial data and simulation problems. In more formal terms, we need to build an intersection 
and dimensionality reduction optimization algorithm, for a set of insured flood risks {1, …, n} 
with geospatial coordinates {q(1), …, q(n)}, subject to a flood intensity simulation of size: i = 1 
to Q, which in practice measures flooding water depth {p(1,1), …, p(n, Q)}. In the mapping 
phase of the algorithm, we build geospatial polygons q’, which cluster nearby insured risks from 
the whole data set: {q(1), …, q(n)} by some distance measure {d}. In the second grouping step of 
the algorithm, for the polygons {q’(1), ..., q’(k)}, which now cumulatively cover the entire 
geospatial distribution of insured risks, we create a subset of the simulation [Q]. Thus, for one 
and any geopolygon q’(1), which contains m < n insured risks, we have reduced the required 
simulated data for analytics operations from {p(1,1), …, p(n, Q)} to p{(1,1), …, p(m, Q)}. This is 
illustrated in Figure 5.   
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Figure 5. Mathematics Workflow in Mapping and Reduction Algorithms 

 

With this optimization approach, computing insured losses and correlation matrices within each 
polygon and subsequently for the entire geospatial distribution of risks becomes a much more 
manageable and sustainable proposition. Individual distributed computational resources are 
assigned to computing statistical, loss and risk metrics for each polygon, which is more effective 
and more economical than running the full simulation on a nonpartitioned and nondistributed 
compute resource. 

5.4 Scheduling and Synchronization by Service Chaining 

Distributed and service chaining algorithms process geospatial analysis tasks on data 
components simultaneously and automatically. For logically independent processes, such as 
computing intensities or losses on uncorrelated scenarios of a simulation, service chaining 
algorithms will divide and manage the tasks among separate computing resources. Dependencies 
and correlations among such data chunks may not exist because of large geospatial distances, as 
we saw in some of the modeling and pricing scenarios in our cases studies. Hence, they do not 
have to be modeled explicitly and performance improvements are gained immediately. For such 
scenarios, both input data and computational tasks can be broken down into pieces and subtasks 
respectively. For logically interdependent tasks, such as accumulations of interdependent 
quantities like losses in geographic proximity, chaining algorithms automatically order the 
commencement and completion of dependent subtasks.  

In our modeled scenarios, the simulated loss distributions of risks in immediate proximity are 
accumulated first, where dependencies are expected to be the strongest. A second tier of 
accumulations for risks with partial dependence due to longer distances and full independence 
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measures is scheduled for once the first tier of accumulations of highly dependent risks is 
complete. Service chaining methodologies work in collaboration with autoscaling memory 
algorithms, which provide or remove computational memory resources, depending on the 
intensity of modeling and statistical tasks. Challenges still are significant in processing shared 
data structures. An insurance risk management example, which we are currently developing for 
our next working paper, would be pricing a complex multitiered product, comprised of many 
geospatially dependent risks, and then back-allocating a risk metric, such as TVaR, down to 
single risk granularity. On the statistical level, this back-allocation and risk management task 
involves a process called de-convolution or component convolution. A computational and 
optimization challenge is present when highly dependent and logically connected statistical 
operations are performed with chunks of data distributed across different hard data storage 
resources. Solutions are being developed for multithreaded implementations of MapReduce 
algorithms, which address such computationally intensive tasks. In such procedures, the mapping 
is done by task definition and not directly onto the raw and static data.   

 

Some Conclusions and Further Work 

With advances in computational methodologies for natural catastrophe and insurance portfolio 
modeling, practitioners are producing increasingly larger data sets of modeled physical, loss and 
risk metrics. Simultaneously, single product and portfolio optimization techniques are used in 
insurance premium underwriting, which take advantage of metrics in diversification and interrisk 
dependencies. Such optimization techniques significantly increase the frequency of production of 
insurance underwriting data, and require new types of algorithms, which can process multiple 
large, distributed and frequently updated sets. Such algorithms have been developed theoretically 
and now they are entering from a proof-of-concept phase in the academic environments to 
implementations in production in the modeling and computational systems of insurance firms.  

Both traditional statistical modeling methodologies, such as premium pricing, and new advances 
in the definition of interrisk variance-covariance and correlation matrices and policy and 
portfolio accumulation principles require significant data management and computational 
resources to account for the effects of dependencies and diversification. Accounting for these 
effects allows the insurance firm to support cost savings in premium value for policyholders. 

With many of the reviewed advances at present, there are still open areas for research in 
statistical modeling, single product pricing and portfolio accumulation, and their supporting 
optimal big insurance data structures and algorithms. Algorithmic communication and 
synchronization cost between global but distributed structured and dependent data is expensive. 
Optimizing and reducing computational processing cost for data analytics is a top priority for 
both scientists and practitioners. Optimal partitioning and clustering of data, and particularly so 
of geospatial images, is one other active area of research.  
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