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ERM Stochastic Analysis Tools: Risk Drivers

Revealed, Part II:

Conditional Conditional∗Tail Expectation

Steven Craighead, CERA, ASA, MAAA

Abstract

Most stochastic Enterprise Risk Managment (ERM) models for life insur-
ance examine only the resultant output (specifically the economic capital),
and thereby separate the model results from the key input model assump-
tions, such as the term structure of interest rates. With ERM modeling,
the calculation of economic capital (EC) is very expensive due to the com-
plexity of the products and regulatory controls placed on the industry along
with the requirement of a large number of scenarios to produce the empirical
distribution of EC. Certain techniques have arisen to reduce this modeling
cost, such as grid computing and replicating portfolios. Even with these re-
ductions, a high cost is exacted from the enterprise. However, despite all
of the resources dedicated to the generation of EC, the analysis of results
is frequently limited to the determination of the empirical distribution and
an obligatory examination of the relationships of the five worst and five best
scenarios to the EC.

In 2012, the use of quantile regression (QR) was introduced to the mod-
eling of the conditional VaR. In this paper, conditional Conditional Tail Ex-
pectation (CTE) regression is introduced to develop understanding of how
risk drivers affect the average capital or reserves beyond a conditional VaR
threshold. This simple technique provides additional tools for EC and re-
serve dashboards, especially as principle-based approaches (PBA) continue
to expand within the insurance industry.

∗Though this appears to be a typographical error or form of ‘double-speak’, there is a
valid use of the term ‘conditional conditional‘ that will be made clear within the paper.
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The above is accomplished by applying least squares regression on subsets
through the use of residuals from the QR.

1 Introduction

In (Craighead, 2012) the use of quantile regression (QR) to capital Value
at Risk (VaR) analysis is introduced. Quantile regression was originally
developed by (Koenker and Basset, 1978). This paper will make use of it to:

• Gain further understanding around how risk drivers affect capital mod-
els where VaR is a metric

• Extract additional information from stochastic models of capital

• Aid in the development of risk dashboards that relates the VaR to
changing economic conditions.

The application of a new form of regression allows the examination of
capital models with CTE metrics in a similar fashion to how quantile regres-
sion can be used with VaR metrics. Just as QR addresses the above issues
using VaR metrics in capital modeling, the new regression allows the use of
CTE metrics.

With the tongue firmly planted in cheek, the term ‘double speak’ names
this new regression as Conditional Conditional Tail Expectation(CCTE) and
this naming convention will become apparent in the examination of the two
separate conditional components around the regression.

CCTE regression is built on top of the VaR quantile regression through
the use of QR residuals.

In the next Section 2, the introductory section of (Craighead, 2012) is
expanded where model use and its limitations and benefits is discussed.

Section 3 briefly discusses the illustrative business model that makes use
of the input scenarios and capital results to form the basis of the analysis.
Many more details on the data and scenarios are in (Craighead, 2012).

In Section 4 a model is created that uses one risk driver and examines the
of sensitivity of CCTE to that driver. In a subsection, the use of CCTE to
derive additional understanding around the stochastic reserve component of
the Principles Based Reserve methodology within the U.S. insurance industry
is discussed.
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In Section 5 the use of a CCTE regression model to construct an economic
dashboard is demonstrated.

The strengths and weaknesses, a brief discussion of potential uses and
future research of the CCTE method is discussed in Section 6.

Appendix A demonstrates both quantile and CCTE regression in R. Ap-
pendix B disclaims this work with any affiliation with specific organizations
both past and present. Finally, the bibliography closes the paper.

2 Model Use - Strength and Weaknesses

In the life insurance industry, regulation and/or professional standards re-
quire a practitioner to conduct computer simulations on different lines of
business to determine when the business performs poorly. Business is mod-
eled as accurately as possible, allowing for interest and asset performance,
changing premiums and expense loads. Assumptions on the claims count or
amount distributions may or may not be set. In addition, many other as-
sumptions are set, such as the term structure of interest rates, future interest
rates, projected stock market returns, asset default probabilities, policyholder
psychology, and the relationships of decrements to the level of interest rates
or the stock market. Computer simulations reveal the behavior of the busi-
ness relative to these assumptions. The actual statistical distribution of the
business model results is unknown, however computer simulation results are
assumed to be representative (within some degree of confidence) in certain
areas of interest, such as the extreme tail. After model validation, within
some degree of confidence, economic capital or stand-alone capital must be
calculated. Also, there is a need to observe the potential risks associated
with either the enterprise, product or line of business.

Computer simulations of complex corporate models become very expen-
sive in processing time as the number of scenarios increases. The need to
obtain a timely answer often outweighs the need for information from addi-
tional scenarios.

In ERM life insurance modeling this cost is reduced by using either pre-
dictive modeling, see (Craighead, 2008) or replicating portfolio approaches,
see (Schrager, 2008) or (Burmeister et al, 2010).

Most computer business models are limited by the knowledge practioners
have about the basic assumptions used. Care must be taken in the use
of these models. At a fundamental level, the models are neither correct nor
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assumed to be accurate. However, the benefit of using the computer to model
actual business products and lines is that an understanding of the different
risks to that product or line are revealed. Once there is understanding,
consideration can be taken to reduce the impact of any given risk. Such
methods include product redesign, reserve strengthening, deferred expense
write downs, asset hedging strategies, stopping rules (rules that recommend
when to get out of a market), derivative positions and reinsurance, or over-
capitalization.

Once basic understanding of the risks is gained, which leads to a design,
say, a hedge strategy, one must remember that these models are not accu-
rate, due to oversimplification of the model, lack of knowledge and insight,
lack of confidence in the assumptions, or incorrect computer code. One can-
not trust the model output as the “truth,” but can trust the knowledge and
insight that one gains from the process of modeling. If done correctly one
knows both the strengths and weaknesses of the model. For instance, when
constructing a hedge to protect against the risks demonstrated by the model,
one must not implement a hedge that optimizes against areas of model weak-
ness. Ultimately, the model does not tell one what to do, but the model does
makes one more informed to make business decisions.

It is important to keep a clear perspective when using multiple economic
scenarios in computer simulations. One can gain significant insight about the
risk exposure from the economy using stochastic simulation. One realizes
that only one path actually emerges as in the recent economic meltdown.
Therefore, the practitioner must continually evaluate the economy and make
reasoned business decisions to maintain existing business and to acquire new
business.

The risk appetite of company management must also govern these busi-
ness decisions. Insolvency must be considered and avoided. However, the
practitioner cannot remove all risk of insolvency, because the cost of the
associated hedges becomes so prohibitive that the company is unable to con-
duct business. Accordingly, the practitioner should understand where the
product or business line places the company at risk and be able to com-
municate to upper management the specific risk exposure. For a further
discussion of the balancing act between company profit and insolvency risk
see (Craighead,2008).

ERM practitioners, valuation actuaries, asset/liability management actu-
aries, CFOs and CROs of insurance companies confront issues that are vast
and complex, including:
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• Calculating the probability and/or impact of bankruptcy either by sce-
nario testing or by determining the company’s value at risk.

• Determining the initial capital allocation for a new line of business.

• Assuring that reserves are adequate for new and existing lines of busi-
ness.

• Understanding how different lines of business are sensitive to the level of
interest rates, corporate spreads, volatility of other economic indicators
(such as stock indices), and the changes in the levels of these variables.

• Estimating other risks to which the company is exposed in a timely
fashion.

• Pricing complex policy features to obtain profitability, while maintain-
ing a competitive market position.

• Aiding in the design and pricing of dynamic hedges to reduce the risk
of extreme events.

• Designing and pricing the securitization of various cashflows to reduce
risk based capital requirements and various types of reserves such as
XXX or AXXX.

• Revising and designing investment strategies to improve the return on
assets that back company liabilities.

All of the above issues require timely and accurate valuation of different
complex corporate models. When conducting the analysis on models the
practitioner goes through the following model life cycle:

• Collect relevant data.

• Make relevant assumptions.

• Construct the model.

• Validate the model for reasonableness.

• Apply the model to solve a problem or understand the impact of chang-
ing conditions.
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• Revise the model.

After a corporate model is constructed the practitioner uses the results
in several ways. Some of these are:

• Gain insight on the business modeled.

• Determine risks to the company.

• Observe the scenarios that give adverse model results.

• Increase reserves, create hedges or make product enhancements to re-
duce the risk exposure or adverse results.

The internal company standards and the external regulatory controls re-
quire the practitioner to determine risk levels from corporate models. It is
of paramount importance to understand the impact that different economic
drivers, product designs or investment/disinvestment strategies have on the
behavior of a corporate model. This includes the determination of when
(and how often) model results from scenarios fall in ‘bad’ locations. This
knowledge allows one to interpret the potential magnitude of the company’s
risk exposure. While adverse results occur relatively infrequently in scenario
testing (unless alternative volatility assumptions are considered), the practi-
tioner desires to gain more knowledge of these adverse results without paying
the cost of projecting additional scenarios to increase the number of “hits”
in the region of adverse results needed for statistical validity.

These adverse locations are discovered by first placing a valuation of
economic capital on the company’s position, scenario by scenario. These
valuations are then sorted and put in an increasing or decreasing order. From
these ordered results, the location of the adverse results is found at either
the highest or lowest valuations. The study and analysis of ordered or sorted
samples is done using either order or extreme value statistics or the theory of
records. Due to modeling cost, there is a need to approximate the relationship
between the input economic scenarios and the EC output results without
additional computer processing. Also, if one is able to target the location of
adverse results when developing this relationship, all the better.

Through a model office or a corporate model and more-so the under-
standing arising from the use of those models strengthens decision making.
Frequently, practitioners make reasoned decisions using a few deterministic
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Figure 1: Concept of Risk Drivers

scenarios instead of a full suite of stochastic scenarios, however, though they
may understand the underlying mechanics, they do not understand the like-
lihood of the impact of a risk unless a larger suite of scenarios are used. As
more scenarios are used, the complexity increases and the loss of understand-
ing of the mechanics increases and this leads to the proverbial situation of not
being able to see the forest because of all of the trees in view. But ignorance
that arises from complexity is not always a bad thing. It forces the modeler
or the business professional to broaden their skill set to gain deeper insight,
which leads to further product improvements or at least an understanding of
model limitations.

With the advance of technology there are now new techniques from pre-
dictive analytics or data science that can be applied to these complex situa-
tions, and allow the practitioner to gain understanding of the model behavior
between the scenario input and the corporate results.

The relationship between the scenario and the corporate results is out-
lined in Figure 1 where there is a non-linear computer corporate model that
takes economic scenarios as input and produces certain model output, which
represents the EC of the corporate model. Next, a risk driver is defined to
be a function of the economic scenarios through time that distills the most
informative characteristics of the economic scenarios, which have an impact
on the model output. For example, the extraction of the time series of the
90-day Treasury bill rate from each scenario would be a potential risk driver.
Another example is the time series of the spread of the 10-year Treasury note
over the 90-day Treasury bill rate.
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The dashboard model can be either a linear, a nonlinear, or even a pre-
dictive approximation of the EC at specific percentiles or averages of the
EC above or below that specific percentile. This simpler model displays the
relationship between the risk drivers and the results from original non-linear
corporate model.

Next section looks at the data used to construct the examples.

3 Business Model-Input Economic Scenarios

and Economic Capital

For illustrative purposes, 10,000 economic scenarios are used, which were
generated from the process outlined in (Craighead, 2012). This process was
one of the first used by Nationwide in the determination of reserve adequacy
in the early 1990’s. It is a real world process that has arbitrage within the
yield curve and scenarios.

The projection horizon is 20 years with yield curves varying annually.
The capital model output is the Equivalent Value of Accumulated Surplus
(EVAS).1 These EVAS values are obtained at the end of the projection pe-
riod of 20 years and are discounted back to the valuation date. These are
somewhat liberal in that if the company became insolvent in some year prior
to year 20, but then recovers subsequently, there is no knowledge of that
event contained in the corresponding twenty-year EVAS value.

The specific business model processed in 1993 is lost to history and the
EVAS values have been modified to no longer resemble any of the original
values from 1993. However, even though the scenario generation technique as
well as the EVAS that were determined from these scenarios are dated, they
still supply a rich enough environment to demonstrate the power of CCTE
regression.

1Equivalent value of accumulated surplus is somewhat similar in concept to a present
value, which is scenario dependent. It is also dependent upon the investment strategy
used and is obtained by dividing the surplus at the end of the projection period by a
growth factor. This factor represents the multiple by which a block of assets grows from
the valuation date to the end of the period of interest. It is computed by accumulating
existing assets or an initial lump-sum investment under the interest scenario in question
on an after tax basis with the initial investment and any reinvestments being made using
the selected investment strategy. The growth factor is the resulting asset amount at the
end of the projection period divided by the initial amount at the valuation date, (Sedlak,
1997).
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Figure 2: Associated Graphs of the Capital

(a) Density (b) S-Curve

Graphs of the density and S-curve of the capital are in Figure 2a and
Figure 2b.

The basic statistics on the specific EVAS values are in Table 1.

Variable n Min q1 x̃ x̄ q3 Max s IQR
LOB 10000 -16.1 19.8 25.1 23.1 28.3 34.9 7.4 8.6

Table 1: LOB Capital Statistics

Since only the interest rate scenarios are available for the data, the risk
driver is restricted to be the change in the 10-year Treasury bond rates
from the input scenarios. This is denoted by Y 10

t within the formulas, but
t1, t2, . . . t20 in the regressions.

In (Craighead, 2012) the spread between the 10-year Treasury bond rates
and the 90-day Treasury bill rates was also considered, but this study is
eliminated for space considerations.

9



4 Modeling of CCTE

The regression model uses a standard least squares regression on a subset
of the original data. That subset is determined from specific residuals of a
quantile regression on the CTE target percentile. The use of QR methodology
is in (Craighead, 2012). In that paper, Conditional VaR using QR is modeled
and it was observed how various changes in economic scenario values led to
insight on what directly affects the Conditional VaR amount at different
percentiles.

This is well and fine as long as VaR is the target measurement. However,
some capital and reserve models require an understanding of how economic
values effect the average capital or reserves over (or under) the VaR limit.
Currently, this is done by estimating the unconditional VaR by sorting the
corporate model results and taking the average of all of the values above
(or below) the VaR percentile and this process is called Tail Value at Risk
(TVAR) or Conditional Tail Expectation (CTE). The term ‘Conditional’ here
is related to the fact that you have to sort the results and take the worst
results above or below the specific percentile of the VaR percent. So the CTE
is conditional on the value of the VaR.

A standard linear regression is a model that relates the conditional mean
of the observed variable to the predictors. Here ‘conditional mean’ is based
on the mean of the observed variable related to a restricted region of the
predictors. In the same way a quantile regression is the conditional VaR as-
sociated with a restricted subset of the predictors. Now if we regress on the
subset of the original data, which is restricted to residuals above (or below)
the Conditional Var limit, we have a Conditional ‘Conditional Tail Expec-
tation’ (CCTE) regression model. For instance in Figure 3a, the regressions
are conditioned on when x is between 300 and 400, which is labeled as the
conditional region. Note the use of a two dimensional regression graphic to
illustrate the concept of conditional regression. In Figure 3b we insert the
various regression lines to demonstrate the left tail (bottom) and the right
tail (top). The central line is the standard linear regression through the mean
and the QR regressions are the quantile regression lines for some percentage
above or below the mean. Then the bottom CCTE regression is a standard
linear regression on where the residuals of the bottom quantile regression
is below zero and the top CCTE regression is a standard linear regression
when the residuals of the top quantile regression is above zero. Though not
drawn, a separate linear regression that uses the intersection of where the
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Figure 3: Associated graphs of the Capital

(a) Regression (b) Final Regessions

top quantile regression’s residuals are below zero and the bottom quantile
regression is greater than zero, produces a separate central regression line
that excludes outliers. An outliers-removed regression may compete against
other known robust regression methods, but requires further investigation.

A CCTE will never be as accurate as a CTE in the same fashion as a
Conditional Var to the unconditional VaR, since the CTE is only conditional
on the unconditional VaR and CCTE is dependent on the Conditional VaR.
However, you can only develop a qualitative understanding of the impact of
scenarios on CTE by examining a collection of best and worst case scenarios.
With the CCTE you develop an actual quantitative understanding of the
impact of the economic predictors on the conditional CTE.

These conditional VaR and CCTE models ease the development of dash-
board models in Section 5.

In the analysis of corporate models, the need to observe the effect of
an economic scenario on the model output (specifically economic capital for
ERM models) gives the practitioner a critical understanding of the underlying
economic risks contained in the model.

Observe the QR Conditional VaR formula

Rq = B0,q + B1,qX1 + B2,qX2 + · · ·+ B19,qX19 + B20,qX20 + Uq. (1)

Rq is the capital response (specifically at the qth quantile), and the Xt

are one of the risk drivers mentioned in Section 3 at the end of each year
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t. The Bt,q are the related coefficients for the specific quantile q and Uq is
the error. The assumption that Quant(Uq) = 0 leads to the formula of the
conditional quantile regression:

Quant(Rq) = B0,q + B1,qX1 + B2,qX2 + · · ·+ B19,qX19 + B20,qX20. (2)

In (Craighead, 2012) we examine various properties of Equations 1 and 2,
especially around the use of Student-t statistics to determine significant co-
efficients associated with the predictors and other goodness-of-fit statistics,
so please refer to that document for more detail on those components of the
regression.

The mathematics that assures that Quant(Uq) = 0 gives the necessary
foundation for the CCTE regression in that the residuals resulting from the
fitting of Equation 2 creates the required subsets of the predictors and de-
pendent variables. As mentioned above in the discussion of Figure 3b, this
is done by using the quantile regressions residuals either above zero or be-
low zero to properly subset the right tail or the left tail associated with the
Conditional VaR. For instance, if you want to create the CCTE regression
on the left tail, you will take all residuals of the quantile regression below or
equal to zero and use those values to restrict the predictors and the respec-
tive responses. A standard linear regression on this subset will pass through
the conditional means of the responses and result in a CCTE regression.

To distinguish CCTE regression formulas from the underlying quantile
regression formulas use this:

CCTE(Rq;Orientation) = b0,q+b1,qX1+b2,qX2+· · ·+b19,qX19+b20,qX20 (3)

where the bi,q denotes the coefficient for predictor Xi at time i. The value
of Orientation will be either Left, Right, Bottom or Top. Left and Bottom
will be based on negative or zero residuals and Right and Top denote zero
or positive residuals from the respective quantile regression Quant(Rq).

The construction of various CCTE regressions will determine the effect
of specific risk drivers from the underlying economic series in the scenarios.
For instance, the example scenarios have both 90-day and 10-year Treasury
rates, which allows one to understand how the change in the 10-year rate
or the spread between the 10-year and 90-day rate influences the CCTE of
the surplus. The creation of other esoteric risk drivers is easily done by
using different functions on either or both of the underlying scenario series,
if there is a specific need. Once the corporate model results are available and
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Table 2: Quantile Regression results for 0.5% 10-year Treasury (Left tail)

Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Ranking
(Intercept) 1.280 0.475 2.693 0.007 NA NA NA
t1 92.396 33.170 2.786 0.005 92.396 0.094 F
t2 -98.147 35.513 -2.764 0.006 -98.147 0.100 E
t3 -247.593 38.232 -6.476 0.000 -247.593 0.253 A
t4 -160.356 30.839 -5.200 0.000 -160.356 0.164 C
t5 -180.837 29.024 -6.231 0.000 -180.837 0.185 B
t6 -143.592 37.979 -3.781 0.000 -143.592 0.147 D
t7 -56.589 28.809 -1.964 0.050 -56.589 0.058 G
t8 10.903 33.627 0.324 0.746 0.000 0.000
t9 -27.137 33.062 -0.821 0.412 0.000 0.000
t10 46.794 24.318 1.924 0.054 0.000 0.000
t11 21.298 36.150 0.589 0.556 0.000 0.000
t12 -39.627 29.036 -1.365 0.172 0.000 0.000
t13 -26.421 26.572 -0.994 0.320 0.000 0.000
t14 4.211 29.077 0.145 0.885 0.000 0.000
t15 -17.096 29.446 -0.581 0.562 0.000 0.000
t16 10.098 26.656 0.379 0.705 0.000 0.000
t17 17.748 27.495 0.645 0.519 0.000 0.000
t18 10.361 27.558 0.376 0.707 0.000 0.000
t19 -24.687 28.713 -0.860 0.390 0.000 0.000
t20 3.466 29.766 0.116 0.907 0.000 0.000
Absolute Sum 979.511

Table 3: CCTE Regression results for 0.5% 10-year Treasury (Left tail)

Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Ranking
(Intercept) -0.881 0.344 -2.564 0.016 NA NA NA
t1 66.341 50.339 1.318 0.198 0.000 0.000
t2 -124.612 57.306 -2.174 0.038 -124.612 0.163 D
t3 -189.754 46.663 -4.067 0.000 -189.754 0.248 C
t4 -228.764 61.855 -3.698 0.001 -228.764 0.299 A
t5 -221.112 79.442 -2.783 0.010 -221.112 0.289 B
t6 -57.141 74.401 -0.768 0.449 0.000 0.000
t7 -67.863 35.288 -1.923 0.065 0.000 0.000
t8 25.704 98.747 0.260 0.797 0.000 0.000
t9 -52.805 91.394 -0.578 0.568 0.000 0.000
t10 -5.664 59.803 -0.095 0.925 0.000 0.000
t11 58.293 97.722 0.597 0.556 0.000 0.000
t12 104.681 88.949 1.177 0.249 0.000 0.000
t13 -132.457 88.222 -1.501 0.144 0.000 0.000
t14 41.100 56.752 0.724 0.475 0.000 0.000
t15 -15.922 79.978 -0.199 0.844 0.000 0.000
t16 -80.222 80.459 -0.997 0.327 0.000 0.000
t17 -40.565 84.702 -0.479 0.636 0.000 0.000
t18 -50.173 61.575 -0.815 0.422 0.000 0.000
t19 10.248 81.692 0.125 0.901 0.000 0.000
t20 -38.776 56.797 -0.683 0.500 0.000 0.000
Absolute Sum 764.242
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Table 4: Quantile Regression results for 99.5% 10-year Treasury (Right tail)

Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Ranking
(Intercept) 30.111 0.036 839.051 0.000 NA NA NA
t1 316.130 2.335 135.416 0.000 316.130 0.198 A
t2 277.366 1.856 149.467 0.000 277.366 0.174 B
t3 215.893 1.929 111.921 0.000 215.893 0.136 C
t4 162.752 2.494 65.261 0.000 162.752 0.102 D
t5 109.761 2.388 45.968 0.000 109.761 0.069 E
t6 100.180 1.846 54.265 0.000 100.180 0.063 F
t7 62.215 2.302 27.032 0.000 62.215 0.039 G
t8 29.721 2.076 14.314 0.000 29.721 0.019
t9 8.861 1.785 4.965 0.000 8.861 0.006
t10 -1.118 3.194 -0.350 0.726 0.000 0.000
t11 -21.232 3.029 -7.009 0.000 -21.232 0.013
t12 -42.542 2.330 -18.255 0.000 -42.542 0.027
t13 -46.397 3.455 -13.429 0.000 -46.397 0.029
t14 -53.058 2.269 -23.388 0.000 -53.058 0.033
t15 -53.757 1.979 -27.159 0.000 -53.757 0.034
t16 -46.399 2.190 -21.191 0.000 -46.399 0.029
t17 -17.927 1.797 -9.978 0.000 -17.927 0.011
t18 -14.432 2.165 -6.667 0.000 -14.432 0.009
t19 -11.283 1.838 -6.138 0.000 -11.283 0.007
t20 -3.315 1.607 -2.063 0.039 -3.315 0.002
Absolute Sum 1593.22

Table 5: CCTE Regression results for 99.5% 10-year Treasury (Right tail)

Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Ranking
(Intercept) 30.312 0.050 610.007 0.000 NA NA NA
t1 308.491 10.304 29.940 0.000 308.491 0.196 A
t2 275.186 9.578 28.731 0.000 275.186 0.175 B
t3 217.509 10.461 20.793 0.000 217.509 0.138 C
t4 162.299 10.086 16.091 0.000 162.299 0.103 D
t5 102.359 10.476 9.771 0.000 102.359 0.065 F
t6 105.700 7.752 13.635 0.000 105.700 0.067 E
t7 59.160 7.581 7.804 0.000 59.160 0.038 G
t8 21.818 7.002 3.116 0.004 21.818 0.014
t9 -2.674 8.104 -0.330 0.744 0.000 0.000
t10 0.168 7.706 0.022 0.983 0.000 0.000
t11 -18.067 6.228 -2.901 0.007 -18.067 0.011
t12 -54.432 6.199 -8.780 0.000 -54.432 0.035
t13 -50.058 6.080 -8.233 0.000 -50.058 0.032
t14 -55.290 6.403 -8.636 0.000 -55.290 0.035
t15 -58.968 4.705 -12.532 0.000 -58.968 0.037
t16 -44.631 4.595 -9.714 0.000 -44.631 0.028
t17 -30.523 5.064 -6.027 0.000 -30.523 0.019
t18 -7.314 5.217 -1.402 0.172 0.000 0.000
t19 -10.920 3.452 -3.163 0.004 -10.920 0.007
t20 -8.695 4.925 -1.766 0.089 0.000 0.000
Absolute Sum 1575.412
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Table 6: Quantile Regression results for 70.0% 10 Year Rate (Right tail)

Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Ranking
(Intercept) 27.631 0.036 758.796 0.000 NA NA NA
t1 217.551 2.493 87.248 0.000 217.551 0.172 A
t2 183.612 2.813 65.277 0.000 183.612 0.146 B
t3 130.289 3.015 43.218 0.000 130.289 0.103 C
t4 92.061 3.005 30.641 0.000 92.061 0.073 D
t5 50.763 3.267 15.540 0.000 50.763 0.040
t6 27.001 3.319 8.134 0.000 27.001 0.021
t7 -9.475 3.531 -2.683 0.007 -9.475 0.008
t8 -30.168 3.619 -8.337 0.000 -30.168 0.024
t9 -40.999 3.939 -10.407 0.000 -40.999 0.032
t10 -47.079 4.118 -11.434 0.000 -47.079 0.037
t11 -60.134 4.071 -14.770 0.000 -60.134 0.048
t12 -79.347 4.045 -19.616 0.000 -79.347 0.063 E
t13 -70.841 3.995 -17.732 0.000 -70.841 0.056 F
t14 -66.563 3.859 -17.248 0.000 -66.563 0.053 G
t15 -66.034 4.125 -16.007 0.000 -66.034 0.052
t16 -47.963 3.919 -12.237 0.000 -47.963 0.038
t17 -25.408 3.625 -7.009 0.000 -25.408 0.020
t18 -16.598 3.857 -4.303 0.000 -16.598 0.013
t19 -6.535 3.749 -1.743 0.081 0.000 0.000
t20 4.945 3.067 1.612 0.107 0.000 0.000
Absolute Sum 1261.889

Table 7: CCTE Regression results for 70.0% 10 Year Rate (Right tail)

Standard Significant Influence
Time Coefficient Error t value Pr(> |t|) Coefficient Ranking
(Intercept) 28.643 0.017 1655.513 0.000 NA NA NA
t1 252.669 2.908 86.889 0.000 252.669 0.187 A
t2 212.891 2.816 75.590 0.000 212.891 0.158 B
t3 164.315 2.749 59.779 0.000 164.315 0.122 C
t4 120.254 2.742 43.864 0.000 120.254 0.089 D
t5 73.760 2.610 28.265 0.000 73.760 0.055 E
t6 52.000 2.538 20.493 0.000 52.000 0.039
t7 14.096 2.512 5.611 0.000 14.096 0.010
t8 -10.270 2.290 -4.485 0.000 -10.270 0.008
t9 -22.175 2.283 -9.714 0.000 -22.175 0.016
t10 -35.309 2.180 -16.196 0.000 -35.309 0.026
t11 -47.195 2.072 -22.776 0.000 -47.195 0.035
t12 -65.795 2.030 -32.412 0.000 -65.795 0.049 G
t13 -64.627 1.938 -33.352 0.000 -64.627 0.048
t14 -66.081 1.848 -35.762 0.000 -66.081 0.049 F
t15 -59.486 1.831 -32.490 0.000 -59.486 0.044
t16 -42.634 1.783 -23.909 0.000 -42.634 0.032
t17 -25.113 1.732 -14.500 0.000 -25.113 0.019
t18 -12.592 1.682 -7.488 0.000 -12.592 0.009
t19 -7.590 1.662 -4.568 0.000 -7.590 0.006
t20 2.332 1.634 1.427 0.154 0.000 0.000
Absolute Sum 1348.853
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the scenarios contained within the modeling environment (in this situation
the R environment), it is very simple to generate various regressions that
reveal relationships without having to rerun the corporate model. This way
the extractation of additional information from the stochastic results is done
with a minimal amount of effort. Section 5 discusses how to use regression
models as dashboards to monitor material effects as the exterior economy
changes.

In the example below, there will only be one economic series, which is
the change in the ten-year Treasury rate through time. The risk driver does
not have to be a single series through time. The risk driver chosen can
have any relationship between different series such as the spread between
the ten-year note rate and the 90-day bill rate. However, note that these
series are consistent through time. If the drivers have different attributes at
different times, the approach of using the ranking of the absolute value of
the coefficients becomes invalid, since this requires the predictors to be on a
consistent basis. However, if the dashboard requires looking at multiple risk
drivers that are not consistent between themselves, the need to standardize
the predictors arises to make the regressions comparable between the various
risk drivers. For instance if the scenario set has both interest rates and equity
indices, by standardizing, the mean and variance of the separate interest rate
series will be on a consistent basis as the standardized equity series and the
use of rank ordered absolute coefficients becomes valid.

Since CCTE regression builds upon a quantile regression, we look at the
some of the quantile regressions from (Craighead, 2012) and construct the
CCTE regressions on those. Tables 2 and 4 have the same coefficients as
in (Craighead, 2012) but small improvements on the Student-t values lead
to small changes in the original influence ranking. The resultant CCTE
regressions are in tables 3 and 5.

These models, developed through the methods in Appendix A, reveal the
relevant information that is needed for the practitioner. Initially, the actual
value of the CCTE coefficients is not as critical to the understanding as is
the relative magnitude when compared to all of the coefficients. The use of
the absolute magnitude of the coefficients locates the year of a specific risk
driver as defined in the design matrix of the regression. This approach takes
on a qualitative nature in that it does not predict the actual CTE values, but
it is used to see what influences risk or profit. The pricing actuary can use
the qualitative averages approach to determine design flaws when examining
the averages of values below low quantiles and positive upside design features
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in averages over high quantiles. The valuation actuary can use this type of
report to locate various risks and locations of those risks in existing lines of
business. This also allows the actuary and the financial engineer to deter-
mine risk exposure from embedded options in the business. The financial
engineer can also use these methods to improve his or her derivative hedge.
In the past the practitioner may have used different deterministic scenarios
to determine the direction of the markets that created risk exposure to the
business. The deterministic scenarios do not indicate the significance or aid
in the determination of the exact location in the projection period that the
business is at the highest risk.

Note the following relationship for CCTE(Rq;Right) to the various risk
drivers Xt. If value of the Xt can have both positive and negative values,
we need only to examine the large |bt,q|. If one is studying where average
profit is enhanced at the specific percentage being studied, if Xt is positive
and |bt,q| is large and bt,q is positive, CCTE(Rq;Right) increases. If Xt is
negative and bt,q is negative, CCTE(Rq;Right) also increases. Just reverse
this reasoning if one is interested in determining when the business model is
at a risk for loss, which is the consideration of CCTE(Rq;Left).

In Table 3 we display the CCTE model regression that corresponds to the
average capital below (left tail or bottom residual in the conditional region)
the 0.5% target percentile of the EVAS as modeled against the change in
10-year Treasuries risk driver Y 10

t as mentioned in Section 3.
In this table, the values in the coefficient column correspond to the bt,.005

in Equation 3. The Standard Error column displays confidence bounds on
each coefficient’s estimate. The t–value column displays the value of the
Student-t statistic relating the standard error to the coefficient’s value. A
good rule of thumb for coefficient significance is for the absolute value of
the Student-t statistic to be greater than two. The associated probability
with the Student-t statistic is the Pr(> |t|) column. If Pr(> |t|) is less
than 5%, then we can be at least 95% confident in the estimate of the coef-
ficients. These five columns are direct output from the rq function in R in
Appendix A. The additional columns display the impact of the coefficients
on the model and are generated by the signcoeff function defined in the
Appendix. The Significant Coefficient column is the absolute value of the
bt,.005 if the Student-t statistic is significant, or zero if it is not. The Absolute
Sum of this column is then used to derive the Influence value by taking a
specific Significant Coefficient value divided by the Absolute Sum. The Influ-
ence values denote at what point in time the risk driver has influence and the
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amount of influence on the CCTE regression as in (Craighead, 2012). The
Ranking column displays the top Influence values. So, an A ranking will be
the location in time that the underlying risk driver has the most influence on
the CCTE regression. Its overall contribution to the CCTE model is equal
converting the Influence value to percent.

In the analysis each risk driver through time must have the same under-
lying characteristics. So, the Intercept coefficient is excluded in the analysis
below, but if a CCTE model is implemented as a dashboard model the In-
tercept should be included.

The Significant Coefficient column only has non-zero values if the t prob-
ability is less than 5%. The absolute sum of the coefficients are at the bottom
of this column for comparison purposes.

As mentioned above, the effectiveness of the influence formula holds if
the underlying Xt are of similar magnitude. For instance, this approach does
not work if a risk driver is the combination of a time series of interest rate
changes and a time series of changes in equity returns. Since the change in
interest rates is less volatile than that of the change in equity returns, larger
coefficients arise from the interest rate changes than from the coefficients
associated with the equity changes.

The Ranking column is just an alphabetical ranking to further distinguish
which time in the future the risk driver has the greatest impact.

Now to interpret the CCTE models, look at the change in 10-year rates
risk driver Y 10

t in Table 3.

• The 0.5% model corresponds to severe downside possibilities. For in-
stance, year 4 has the most impact on the downside risk, since it has a
large negative coefficient and if there is a large positive change in the
10-year rate, the model indicates that things will worsen. From the
Influence value, we see that this one coefficient explains 29.9% of the
change in the model. In addition, note that if the change in the 10-year
rates are increasing in years 2 through 5, the company is at increased
risk.

• Look at the 99.5% upside model in Table 5, notice how the largest sig-
nificant coefficient starts at year 1 and the significance is high through
year 7. So if the change in the 10-year rate is sharply increasing in
these years, we should see positive increases in the model, which means
that the conditional average capital will grow.
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• If you compare the left tail quantile regression in Table 2 to that of the
CCTE regression you will observe that the drivers for the CCTE are less
complex than the quantile regression. However, when you compare the
right tail quantile regression in Table 4 the rankings are almost identical
with that of the right tail CCTE regression. This is an example where
analyzing both quantile and CCTE regressions give additional insight
on the underlying risk driver.

The use of QR and CCTE regressions allow the practitioner to conduct 
risk analysis on several different risk measures. In fact in the past the prac-
titioner did not consider some of the above analyses without extensive addi-
tional computer runs. This increased ability may initially raise more ques-
tions for the practitioner to analyze, but this type of risk analysis is an 
excellent tool to conduct these analyses.

Next we apply CCTE regression to determine the 70% CTE on the data 
to demonstrate CCTE regression as an additional analysis tool to use in 
PBR.

4.1 Principle-Based Reserves

Regulatory control, arising from the prior meltdown, has increased the use 
of stochastic scenarios in the determination of reserves through the use of 
principle based approaches. The development of the revised standard valua-
tion law to allow for PBR and life principle-based reserves under Valuation 
Manual 20 (VM-20) and Actuarial Guidelines 43 (AG-43) are examples of 
the use of CTE methodology in the determination of stochastic reserves.

Since principle based reserves is the maximum of the gross premium re-
serve, the deterministic reserve and the stochastic reserve, as long as the 
gross premium or the deterministic reserve exceeds the stochastic reserve, 
there is not much need to consider what influences the stochastic reserve. 
We are assuming that the stochastic reserve is a 70% CTE estimate. But, 
if a product has embedded options, the stochastic reserve can dominate the 
other reserves. In this situation PBR can add volatility to the balance sheet 
and to the GAAP earnings. In that situation, having a dashboard that esti-
mates the impact of frequent economic changes on the stochastic reserve is 
useful. Even if the stochastic reserve does not dominate the other reserves, 
CCTE regression determines what conditions influence the growth of the 
reserve and this is informative to the valuation or pricing actuary.
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We reuse the capital data to analyze how the change in 10-year Trea-
sury rates influence the CCTE(R70;Right) model. Tables 6 and 7 are the
respective quantile and CCTE regressions.

We see that both the CCTE and the quantile regressions have similar
Rankings where the change of the ten-year rate in year one has the highest
influence on the regression. It does have more influence on the CCTE regres-
sion than the quantile regression where its influence is one percent higher,
with an influence of 18.7% versus 17.2%. With strictly positive coefficients
for the first five years, we see that if the ten-year rates increase over that
period where the resulting Quant(R70) and CCTE(R70;Right) increase and
thereby the stochastic reserves increase. The reserves are also sensitive if
the magnitude of the change in rates is large, since the coefficients are large.
So a sharply rising interest rate environment increases the reserves. Now,
observe in both regressions that in years 12 through 14, that the coefficients
are negative, but their absolute value is between 1

2
and 1

3
in magnitude to the

positive coefficients in the first five years. In this situation if rates continue 
to rise in years 12 through 14, then the reserves will decline, but if rates fall 
instead, then the reserves will go up. The worst case scenario is for rates to 
sharply rise in the first seven years and then sharply fall from year 8 forward. 
The 70th percentile has this same sensitivity, but less so. Here we see that 
the actual reserves determined by the average of the worst cases over the 
70th percentile are more sensitive to the economy than the 70th percentile 
alone.

In the analysis, observe the construction of a scenario that tasks the 
reserves. Possibly, a closer use of the regression could refine this type of sce-
nario further. In corporate Valuation and ERM, the determination of sets of 
extreme scenarios to target specific limits for product lines and accumulated 
values from those lines are rarely in common. There is a need to conduct fur-
ther study to determine the feasibility of using regression in common extreme 
scenario design.

In the next section the use of CCTE regression in dashboard construction 
is reviewed.

5 Dashboard model construction
Below is an outline of turning QR and CCTE results into dashboards:

• Pick a specific risk driver based on the scenarios, which can be easily
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extracted from current daily or weekly economic data.

• Choose the VaR target percent.

• Produce the related QR and CCTE model on the specific risk driver.

• Use a technique to approximate future values of the economic indica-
tor. For example, if the risk driver is related to the change in 10-year
Treasuries, take the current yield curve and produce the implied 10-
year forward rates at times where the coefficients are significant. Using
these forward rates, then replace the predictors with the change of rates
between the separate 10-year forwards.

To model spreads, create the 90-day forward rates and calculate the
spread at each time in the future.

If the risk driver is an equity return there are two approaches to the con-
struction of the dashboard. One, assume that the current economic return
is held constant into the future due to a no arbitrage assumption, and all
of the predictors in the model is replaced with that single value. Another
approach is to actually use a simple economic generator for that equity re-
turn and produce multiple equity scenarios and quickly process these future
returns through the model and average the results, or look at the evolving
uncertainty through time.

If the risk driver is either a change in call prices, put prices or equity
volatilities, take a similar simulation approach for equity returns.

6 General Comments, Conclusions and Fu-

ture Research

(Koenker and Machado, 1999), (Portnoy, 1999), and (Craighead, 2000) dis-
cuss several ways to display Quantile Regression results. These can also be
used to display CCTE regressions as well.

Below is a list of strengths and weaknesses of this methodology.

6.1 Strengths and Weaknesses

The strengths of the CCTE methodology are:

• The input scenarios tie to the output.
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• The sign and magnitude of the coefficients give insight into risk expo-
sures.

• Averages above or below specific percentiles are targets in the output.

• The model reveals the influence of a specific period in time to the
capital for a specific risk driver.

• Models can be calibrated very fast. The regressions on 10,000 scenarios
are usually under one minute in R.

• One can use standard regression analytics on the CCTE regressions.

• The models allows for quick sensitivity testing.

• Though the examples are linear models, you can conduct non-linear
regressions on the subsets of residuals.

• The analysis can be conducted at separate levels. For instance, CCTE
can be used to examine the impact of changing economics on a com-
pany’s reserves or its capital, if a company uses principle based ap-
proaches to estimate its economic capital.

The main weaknesses of the use of CCTE are

• It is relatively complex, since it is layered on a quantile regression’s
results.

• Close scrutiny is required to not oversimplify the impact of specific risk
drivers on the capital models.

• Extreme outliers do affect the results since the CCTE regression is a
standard linear regression.

6.2 Concluding Remarks

This paper has outlined the development of the CCTE methodology. This
methodology has developed a report that reveals the impact of a risk driver at
specific times and provides another quantitative approach to understanding
the behavior of business. Also, this paper has examined the use of CCTE
in the analysis of the stochastic reserve sensitivity to a risk driver. Also,
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the development of using CCTE in the design of dashboards was addressed,
especially in the monitoring of EC and the stochastic component of princi-
ple based reserves and capital. Future research will be conducted on other
applications of the CCTE regression that require averaging values between
specific conditional regions. In addition, how effective a CCTE regression
is as a robust regression, since it can easily allow the exclusion of outliers
within the data will be examined. Also this new regression shows promise in
scenario design, and we will expand this methodology in that area as well.

A Linear and Quantile Regression Modeling

in R

R based on (R Development Core Team, 2017) has become the lingua franca
of the statistical world. Though most of the analysis from ERM models
occurs in Excel, R is still a good candidate to conduct extensive statistical
analyses with the related graphical output. Some of R’s benefits are:

• It is an open source system.

• It runs on multiple platforms.

• It is free.

• It can easily be integrated into multiple packages including Excel.

• It is constantly improving with cutting edge statistical tools being de-
veloped by researchers.

• Leading subject matter experts, such as Koenker, have created and
continue to maintain high quality packages that can used by anyone
willing to learn a new computer language.

Below, the economic scenarios and the corporate model EVAS results are
within R and we outline how to conduct the various regressions. To simplify
the use of significant coefficients the R function singcoeff is below. Its
design allows its application to both quantile and linear regressions, where
it converts a standard regression report into a data frame that contains the
significant coefficients along with the ranking of the influence of those coef-
ficients.
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signcoeff<-function(regobj,reg=1)

{

if(class(regobj)=="lm") x<-summary(regobj)$coefficients

if(class(regobj)=="rqs") x<-summary(regobj,se="iid")[[reg]][[3]]

signcoef<-as.numeric(x[,4]<.05)*x[,1]

influence<-signcoef[2:length(signcoef)]

inf<-abs(influence)/sum(abs(influence))

qqq<-c(0,inf)

qqqq<-factor(rank(c(-qqq)))

qqqq

noleves<-length(levels(qqqq))

if(noleves==1) levels(qqqq)<-""

if(noleves==2) levels(qqqq)<- c("A","")

if(noleves==3) levels(qqqq)<- c("A","B","")

if(noleves==4) levels(qqqq)<- c("A","B","C","")

if(noleves==5) levels(qqqq)<- c("A","B","C","D","")

if(noleves==6) levels(qqqq)<- c("A","B","C","D","E","")

if(noleves==7) levels(qqqq)<- c("A","B","C","D","E","F","")

if(noleves==8) levels(qqqq)<- c("A","B","C","D","E","F","G","")

if(noleves>=9) levels(qqqq)<- c("A","B","C","D","E","F","G",rep("",noleves-7))

qqqq

signcoef[1]<-0.0

inf<-c(0.0,inf)

xxx<-data.frame(cbind(x,signcoef,inf,as.character(qqqq)))

names(xxx)<-c(colnames(x),"Significant\nCoeffient","Influence\nPercent","Ranking")

xxx[,1:6] <- lapply(xxx[,1:6], function(x) as.numeric(as.character(x)))

xxx

}

Below are the commands for the QR and CCTE regressions on the change
in the 10-year Treasury rate study:

library(quantreg)

rqcase<-data.frame(cbind(LOB,nmrs10[,2:21]))

names(rqcase)[1]<-"V1"

rq10<-rq(V1~.,data=rqcase,tau=c(.005,.995),method="fn")

summary(rq10)

signcoeff(rq10)

rq10one<-as.numeric(names(rq10$residuals[rq10$residuals[,1]<=0,1]))

rq10low<-lm(V1~.,data=rqcase[rq10one,])

summary(rq10low)

signcoeff(rq10low)

signcoeff(rq10,2)
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rq10two<-as.numeric(names(rq10$residuals[rq10$residuals[,2]>=0,2]))

rq10high<-lm(V1~.,data=rqcase[rq10two,])

summary(rq10high)

signcoeff(rq10high)

The first command loads the quantreg package into R.
The second line creates the data frame. The term evasadj[,39] ref-

erences the EVAS data frame for the 39th line of business’s values and the
nmrs10[,2:21] data frame is the 10-year Treasury rates from time 1 through
20. Since time 0 rates are all the same, if you include this rate, the regres-
sions will fail, since the time 0 predictor is not independent from the time
1 through time 20 predictors. The capital and the 10-year Treasuries rates
are combined into one data frame using cbind and data.frame commands.
The results are stored in rqcase.

The names command is used to assure that the capital value has a con-
sistent name of V1.

The fourth command is where the actual QR model is built by the use
of the rq function. Using the model formula framework, the first variable in
the data frame is named V1 (which is the EVAS) is modeled against all of the
other variables in the data frame by the use of the V1~. command. The
data frame is referenced by the data = command and the 0.5% and 99.5%
quantiles are input by the tau=c(.005,.995) command. The method of
fitting indicated by the method="fn" command specifies the Frisch–Newton
interior point method. Finally the model is stored into the QR object rq10.

The summary command produces QR results similar to these:

Call: rq(formula = V1 ~ ., tau = c(0.005, 0.995), data = rqcase, method = "fn")

tau: [1] 0.005

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 1.28037 0.47549 2.69276 0.00710

t1 92.39614 33.16990 2.78554 0.00535

t2 -98.14702 35.51337 -2.76366 0.00573

t3 -247.59339 38.23197 -6.47608 0.00000

t4 -160.35555 30.83934 -5.19971 0.00000

t5 -180.83712 29.02385 -6.23064 0.00000

t6 -143.59239 37.97919 -3.78082 0.00016

t7 -56.58887 28.80896 -1.96428 0.04953

t8 10.90279 33.62723 0.32422 0.74577

t9 -27.13700 33.06195 -0.82079 0.41178

t10 46.79366 24.31780 1.92426 0.05435

t11 21.29753 36.14966 0.58915 0.55577

t12 -39.62687 29.03554 -1.36477 0.17236

t13 -26.42105 26.57228 -0.99431 0.32010

t14 4.21118 29.07729 0.14483 0.88485

t15 -17.09598 29.44618 -0.58058 0.56153

t16 10.09816 26.65600 0.37883 0.70482

t17 17.74801 27.49546 0.64549 0.51863

t18 10.36056 27.55791 0.37596 0.70696

25



t19 -24.68656 28.71318 -0.85976 0.38994

t20 3.46574 29.76639 0.11643 0.90731

Call: rq(formula = V1 ~ ., tau = c(0.005, 0.995), data = rqcase, method = "fn")

tau: [1] 0.995

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 30.11057 0.03589 839.05051 0.00000

t1 316.12966 2.33451 135.41568 0.00000

t2 277.36559 1.85570 149.46708 0.00000

t3 215.89263 1.92897 111.92126 0.00000

t4 162.75161 2.49385 65.26109 0.00000

t5 109.76131 2.38780 45.96755 0.00000

t6 100.17991 1.84611 54.26537 0.00000

t7 62.21496 2.30157 27.03154 0.00000

t8 29.72095 2.07635 14.31403 0.00000

t9 8.86119 1.78462 4.96531 0.00000

t10 -1.11805 3.19430 -0.35001 0.72634

t11 -21.23153 3.02918 -7.00899 0.00000

t12 -42.54223 2.33043 -18.25512 0.00000

t13 -46.39661 3.45490 -13.42921 0.00000

t14 -53.05779 2.26862 -23.38773 0.00000

t15 -53.75742 1.97937 -27.15890 0.00000

t16 -46.39921 2.18953 -21.19139 0.00000

t17 -17.92702 1.79668 -9.97785 0.00000

t18 -14.43172 2.16469 -6.66687 0.00000

t19 -11.28290 1.83833 -6.13757 0.00000

t20 -3.31534 1.60703 -2.06302 0.03914

The signcoeff command updates the first quantile regression above with
the significant coefficients results. The results are:

Value Std. Error t value Pr(>|t|) Significant\nCoeffient Influence\nPercent Ranking

(Intercept) 1.280373 0.4754869 2.6927611 7.098137e-03 0.00000 0.00000000

t1 92.396145 33.1699047 2.7855415 5.353921e-03 92.39614 0.09432890 F

t2 -98.147016 35.5133704 -2.7636638 5.726119e-03 -98.14702 0.10020007 E

t3 -247.593392 38.2319656 -6.4760832 9.856738e-11 -247.59339 0.25277258 A

t4 -160.355548 30.8393418 -5.1997072 2.035563e-07 -160.35555 0.16370988 C

t5 -180.837117 29.0238517 -6.2306381 4.832936e-10 -180.83712 0.18461989 B

t6 -143.592393 37.9791863 -3.7808181 1.572254e-04 -143.59239 0.14659608 D

t7 -56.588874 28.8089565 -1.9642806 4.952528e-02 -56.58887 0.05777261 G

t8 10.902787 33.6272268 0.3242250 7.457745e-01 0.00000 0.00000000

t9 -27.136996 33.0619455 -0.8207925 4.117841e-01 0.00000 0.00000000

t10 46.793662 24.3178047 1.9242552 5.435101e-02 0.00000 0.00000000

t11 21.297531 36.1496568 0.5891489 5.557747e-01 0.00000 0.00000000

t12 -39.626875 29.0355380 -1.3647715 1.723556e-01 0.00000 0.00000000

t13 -26.421055 26.5722765 -0.9943090 3.200965e-01 0.00000 0.00000000

t14 4.211179 29.0772877 0.1448271 8.848503e-01 0.00000 0.00000000

t15 -17.095976 29.4461792 -0.5805838 5.615341e-01 0.00000 0.00000000

t16 10.098163 26.6560036 0.3788326 7.048202e-01 0.00000 0.00000000

t17 17.748007 27.4954631 0.6454886 5.186255e-01 0.00000 0.00000000

t18 10.360561 27.5579076 0.3759560 7.069576e-01 0.00000 0.00000000

t19 -24.686560 28.7131769 -0.8597641 3.899397e-01 0.00000 0.00000000

t20 3.465736 29.7663911 0.1164312 9.073132e-01 0.00000 0.00000000

The development of rq10one variable is finding which predictors and results
are causing the first quantile regression’s residuals to be negative or zero.
This is the key point of being able to create the CCTE regression, since the
point of interest is where the quantile regression solves for predictors when
the capital values fall below or on the conditional VaR. The rq10one variable
determines the subset of rqcase we conduct the linear regression on. Since
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the linear regression targets only these values and the mean of the dependent
variable, then that regression is a CCTE regression.

The next row with rq10low actually creates the CCTE regression on the
subset of the data from rq10one.

The summary(rq10low) command produces the summary of the linear
regression. This is not displayed due to space limitations.

The signcoeff(rq10low) command produces this result:

Estimate Std. Error t value Pr(>|t|) Significant\nCoeffient Influence\nPercent Ranking

(Intercept) -0.8808962 0.3435106 -2.56439295 0.0159882235 0.0000 0.0000000

t1 66.3410442 50.3385565 1.31789723 0.1982193206 0.0000 0.0000000

t2 -124.6117134 57.3060985 -2.17449306 0.0382740157 -124.6117 0.1630527 D

t3 -189.7539432 46.6625299 -4.06651640 0.0003514775 -189.7539 0.2482903 C

t4 -228.7640759 61.8548677 -3.69840054 0.0009374841 -228.7641 0.2993345 A

t5 -221.1124330 79.4421582 -2.78331352 0.0095302118 -221.1124 0.2893225 B

t6 -57.1405005 74.4011974 -0.76800512 0.4489130971 0.0000 0.0000000

t7 -67.8629088 35.2884686 -1.92309022 0.0646928572 0.0000 0.0000000

t8 25.7037046 98.7472288 0.26029798 0.7965386238 0.0000 0.0000000

t9 -52.8052056 91.3942012 -0.57777414 0.5680343805 0.0000 0.0000000

t10 -5.6639279 59.8026295 -0.09471035 0.9252194404 0.0000 0.0000000

t11 58.2931129 97.7222344 0.59651842 0.5556216186 0.0000 0.0000000

t12 104.6812824 88.9486762 1.17687285 0.2491542953 0.0000 0.0000000

t13 -132.4567447 88.2218087 -1.50140591 0.1444446968 0.0000 0.0000000

t14 41.1001081 56.7522854 0.72420182 0.4749499136 0.0000 0.0000000

t15 -15.9223788 79.9782818 -0.19908378 0.8436358388 0.0000 0.0000000

t16 -80.2223340 80.4590631 -0.99705777 0.3272755803 0.0000 0.0000000

t17 -40.5645552 84.7015499 -0.47891160 0.6357204551 0.0000 0.0000000

t18 -50.1730405 61.5745862 -0.81483358 0.4220444267 0.0000 0.0000000

t19 10.2480407 81.6921486 0.12544707 0.9010660162 0.0000 0.0000000

t20 -38.7759944 56.7972389 -0.68270915 0.5004005765 0.0000 0.0000000

The summary statement summary(rq10) gives the quantile regression
summary from both tails. However, when using the signcoeff function
on the quantile regression object you have to specific which regression by
setting the optional variable reg to correspond to which regression. So
signcoeff(rq10,2) displays the significant coefficients summary on the
right hand tail for the 99.5% conditional VaR.

The development of the rq10two variable is to pick all residuals above
and equal to zero to properly capture the conditional data from the quantile
regression. This variable is then used in the linear regression lm function to
subset the input data to restrict the linear regression to just the right tail
data. The linear regression results is stored in the rq10high object. The
standard regression results on the right tail CCTE regression is produced
by using summary(rq10high) and the corresponding significant coefficients
results come from using the signcoeff(rq10high) function.

To standardize a regression we use the scale function to scale one variable
and use the lapply with scale to scale all variables or selective ones, for
instance rqcase1<-lapply(rqcase,scale) rescales all of the data in the
rqcase data frame above.
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B Disclaimer

The design, use and conclusions of this paper and its related research reflect
only the personal opinions of the author. It does not reflect any opinions or
positions of Columbia University, Pacific Life Insurance, Nationwide Insur-
ance, or the Society of Actuaries.
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