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Abstract 

This study investigates whether simulation-based models can be used to 

predict liquidity risk for banks, which must comply with Basel III by January 2015. 

The importance of holding more capital has become the main prerequisite for Basel 

III, which emphasizes a strong liquidity framework to support funding, but the 

aftermath of the global financial crisis that began in 2007 poses an even greater 

challenge to the banks that have to meet their obligation to remain solvent. In the 

current scenario, to achieve economic recovery globally, banks must manage their 

liquidity gap. The concept of liquidity risk has emerged as the new problem for such 

banks and must be measured and managed.  

The paper looks at the process of developing a measurement framework using 

Black-Scholes and Merton’s asset-based models to measure liquidity risk. The study 

shows how to apply these models in measuring liquidity risk, to determine the 

probability of reaching the stage of insolvency and to estimate the probability of being 

unable to meet payment obligations. This provides a foundation for implementing a 

solid liquidity framework required by banks to meet the Basel III standards.  

The study showed that liquidity risk can be measured using static liquidity 

gaps from Monte Carlo simulation. The main findings from this study were: the 

models can be used further to provide the probability of a bank becoming insolvent 

within six months and quantify the probability of a bank’s failure to meet its payment 

obligation.  

The measurement of liquidity risk shown in this study provides a framework 

for managing liquidity in banks based on static measures of liquidity gaps. This 

serves the need for a global liquidity standard and an effective supervisory review 

process for Basel III.  
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Keywords and Their Definitions 

Liquidity risk Risk of not being able to meet payment obligations due to a shortage 

of liquidity or cash  

LaR     Liquidity at risk 

Liquidity gap    Difference between the total value of assets and liabilities for a bank 

Static liquidity gap  Liquidity gap measured at constant marginal funding cost 

BCBS    Basel Committee on Banking Supervision 

Credit spreads   Difference between the yields of treasury and corporate bonds 

Monte Carlo simulation  Computational algorithm that uses random sampling  

B-S model    Black-Scholes model used for pricing stock options  

         Value of assets at the point of callable liabilities 

Kurtosis   Measure of the peakedness of the probability distribution  

 

 



 

 

1) Introduction …………………………………………………………………………..………..1 

2) Measuring Liquidity Risk and Basel III…………………………………………………3 

3) Development of Stochastic Model to Measure Liquidity Risk………………....7  

LaR (Liquidity at Risk) Based on Monte Carlo Simulation………………………7 

Application of Binomial and Black-Scholes Models ……………..…………..…..9 

Application of Merton’s Asset-based Model…………………………………………12 

4) Monte Carlo Simulation…………………………………………………………………….18 

5) Results…………………………………………………………………………………………….20 

Monte Carlo Simulation Output Measuring Liquidity Risk ………………….20 

Probability of Insolvency Using Binomial and Black-Scholes Models…...21 

Probability of Bank Defaulting on Payments Using Merton’s Asset-based 

Model……………………………………………………………………………………………..22 

6) Conclusion………………………………………………………………………………………24 

 

 

 

Table of Contents 



 

1 

 
1 Introduction  

For Basel III implementation, the minimum common 

equity and Tier 1 requirements will be phased in between Jan. 1, 

2013, and Jan. 1, 2015. The total minimum capital level will be 

raised to 10.5 percent of both Tier 1 and Tier 2. This will force 

banks to seek more funds in securing higher levels of equity and 

managing their liquidity effectively in order to achieve the Basel 

III targets. The Basel Committee also issued proposals for an 

“international framework for liquidity risk measurement, 

standards and monitoring.” Under the current tight market 

scenario, where banks are operating under the lowest interest 

rates in 30 years and with profit margins declining, a real 

challenge stands on achieving stable liquidity. In such tough 

times, a strategy is required to ensure banks are able to manage 

their liquidity risk. If this cycle continues, it will be even more of 

a challenge to raise equity in the form of capital to meet Basel III 

targets.  

Having successfully implemented Basel II, which enabled 

banks to take an advanced approach in reading their risk with 

greater accuracy, the challenge continues to cover other risks. 

During the aftermath of the global financial crisis that began in 

2007, banks throughout the world realized the importance of 

strengthening the resilience of the banking sector and 

international framework for liquidity risk measurement, 

standards and monitoring with Basel III. As a result, a new 

accord was laid out that requires banks to have an effective 

framework which can manage and measure liquidity risk. The 

Basel III accord expects all the large banks to hold more capital, 

with the benchmark level being raised to 10.5 percent. This 

requires the banks to raise more capital and also to provide a 

global liquidity standard that can manage liquidity. This paper 

can be useful in understanding the requirements to manage and 

measure liquidity risk in pursuit of providing an effective 

liquidity risk framework for Basel III implementation.  

“During the aftermath 

of the global financial 

crisis that began in 

2007, banks throughout 

the world realized the 

importance of 

strengthening the 

resilience of the banking 

sector  and 

international 

framework for liquidity 

risk measurement, 

standards and 

monitoring with Basel 

III.” 
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The study investigates the quantification of liquidity risk 

using a stochastic model based on simulation and, later with the 

application of Black-Scholes and binomial models, can provide 

an estimate on the likelihood of a bank becoming insolvent due 

to liquidity shortage over a given time frame. Merton’s asset-

based model is also applied to evaluate the likelihood of a bank 

defaulting on its payment due to liquidity risk. The whole 

objective would be to provide a basis to identify the point of 

liquidity risk that later builds up as a liquidity framework. This 

enables the banks to take necessary actions before being 

impacted with liquidity risk. This involves a detailed quantitative 

approach involving various mathematical options that can be 

useful in predicting financial uncertainty in the capital markets. 

However, the work is limited to developing a stochastic model 

and not to justify the state of liquidity risk faced by any banks. 

Therefore, data being used to develop the model will not be 

actual data. This is done to prevent the final result from the 

model being misinterpreted by the readers. 
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2 Measuring Liquidity Risk and Basel III  

On Dec. 17, 2009, the Basel Committee on Banking 

Supervision (BCBS) published its consultation paper on 

strengthening the resilience of the banking sector. The key focus was 

mainly to cover the definition of capital, counterparty credit risk, 

leverage ratio, systemic risk and countercyclical buffers. This was 

proposed as part of the Basel III accord with the main purpose to 

strengthen the financial sector after the financial crisis. According to 

BCBS:  

“The Basel Committee proposals to strengthen global 

capital and liquidity regulations with the goal of 

promoting a more resilient banking sector.” 

The objective of the BCBS’s reform package is mainly to improve 

the stability of the banking sector to absorb shocks arising from 

economic stress. The previous accord, Basel II, did not propose enough 

benchmarks within the liquidity framework and did not highlight the 

importance of holding extra capital in absorbing systemic risks. Basel 

III has been proposed to mitigate the risk of spillover from the financial 

sector to the real economy. 

The Basel III framework is comprised of the following building 

blocks, agreed and issued by the committee between July 2009 and 

September 2010. They are as follow: 

 To increase the quality of the capital to ensure banks are 

far more prudent in absorbing losses. 

 To increase the risk coverage of the capital framework 

that relates to all the trading activities, securitizations and 

off-balance sheet assets arising from derivates and other 

engineered vehicles. 

 To increase the minimum capital requirement that 

includes the minimum equity to be raised from 2 percent 

“The previous accord, 

Basel II, did not propose 

enough benchmarks 

within the liquidity 

framework and did not 

highlight the 

importance of holding 

extra capital in 

absorbing systemic 

risks.” 
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to 4.5 percent. An additional capital conversion buffer of 

2.5 percent is also included, which brings the total 

minimum equity to 7 percent.  

 To introduce a leverage ratio that would prevent further 

build up of leverage and control the level of risk taking. 

 To raise the standards for the supervisory review process 

with additional guidance on valuation, stress testing and 

liquidity risk management, and corporate governance. 

 To introduce minimum global liquidity standards 

consisting of net stable funding ratio. 

 To promote the build up of capital during good times so 

that it can be used during the period of stress and protect 

the bank from excessive credit growth. 

Based on the committee’s above proposition, strong capital 

requirements are a necessary condition for banking sector stability but 

by themselves are not sufficient. Equally important is the introduction 

of stronger bank liquidity (Bank for International Settlements, October 

2010). Therefore, it’s highly imperative for banks to develop a liquidity 

framework that would be used as a guide. This would enable banks to 

understand their liquidity and strategize accordingly. First, a clear 

measure of liquidity for banks is required before aiming for higher 

liquidity standards as per Basel III propositions shown above. The 

liquidity measure should not be treated any differently from other risk 

measures done previously by many risk managers/engineers. It 

involves developing a stochastic model that can be used to predict the 

level of current liquidity risk for a specific bank. Liquidity risk will be 

measured using a stochastic model developed through Monte Carlo 

simulation and later the point of liquidity crisis over a time frame is 

predicted using the binomial model and Merton’s asset-based model.  

Based on the new Basel III propositions, the key message for 

emerging banks is to improve capital and liquidity management. This 
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paper investigates different mathematical options that can be used to 

predict liquidity risk, which enables banks to use it as a guideline in 

providing the type of liquidity management required by Basel III. The 

mathematical models give an estimate of a time frame. 

In the short term, the implementation of Basel III will impact 

banks’ liquidity because the project costs can impact cash flow, thus 

affecting payment obligations.  

The technique applied in this paper to measure liquidity risk is 

based on the basic definition given by Bessis (2002) for liquidity gap in 

a bank.  

According to Bessis, liquidity gaps are the differences between 

the outstanding balances of assets and liabilities, or between their 

changes over time, which can be depicted below in Figure 2.1. 

Figure 2.1 
Liquidity Gaps and Time Profile of Gaps 

 

(Source:  Bessis 2002, 137) 

 

Marginal or incremental gaps are the differences between the 

changes in assets and liabilities. For any large bank, liquidity gaps are 

the differences, at all future dates, between assets and liabilities. 

Liquidity gaps generate liquidity risk, the risk of not being able to raise 

funds to meet the payment obligation.  

When considering the time it takes assets to mature and the use 

of call option to bring in more cash, banks utilize their own risk 

appetite to set such parameters. These cannot be expected to reflect on 

“In the short term, the 

implementation of Basel III 

will impact banks’ liquidity 

because the project costs 

can impact cash flow, thus 

affecting payment 

obligations.” 



 

6 

  
the calculations because every bank will proceed at its own discretion 

based on its risk assessment and the level of risk appetite it can contain 

against the transactions. Also, banks have to decide to what extent they 

need to lock in their long-term funding against market dynamics. This 

has been stressed by Barfield and Venkat (2009), who clearly state that 

lending timescales will increase because banks will need to be more 

assertive when locking in their long-term funding. This decision to set 

lending timescales will be purely based on their own risk appetites and 

the necessity to meet near-term obligations once they have been 

measured. 

Quantification of liquidity risk continues to challenge banks 

because the value of the bank’s liquid assets is always changing and 

therefore it’s difficult to fit this change to any model that can predict 

future behavior. However, illiquid assets can be fitted to a financial 

model such as Merton’s asset-based model because the movement is 

pro-cyclical.  

 

  

“Quantification of liquidity 

risk continues to challenge 

banks because the value of 

the bank’s liquid assets are 

always changing and 

therefore it’s difficult to fit 

this change to any model 

that can predict future 

behavior.” 
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3 Development of Stochastic Model to Measure 

Liquidity Risk  

LaR (Liquidity at Risk) Based on Monte Carlo Simulation 

The first stage of the process was to quantify the liquidity gaps 

originating from the bank’s financials. The data obtained was taken 

from the bank’s financials published every six months starting in June 

1998 and ending in June 2010. After every six-month period, liquidity 

gaps are tabulated and later put into a Monte Carlo simulation engine 

using @RISK Industrial software to obtain the distribution curve 

(details of Monte Carlo simulation are explained in section 4). The 

curve is similar to the loss curve but the axis is measured as a liquidity 

gap expressed as R’m (million dollars). The final distribution curve 

obtained through simulation is shown below over the fixed period of six 

months. 

Figure 3.1 
Probability Distribution Curve of Final Distribution Curve 

 

 

The period of six months is based on the dates the financials are 

disclosed to the shareholders. This is the period taken by banks to 

justify their liquidity position to shareholders. The best fitting curve is 

found for the gap distribution and put through Monte Carlo simulation.  

The results from Monte Carlo distribution provide the amount of 

liquidity required to avoid insolvency or failure to meet obligations.  
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This amount of required liquidity from Monte Carlo distribution 

is stated at a confidence level of 99.65 percent set for banks achieving a 

BBB rating set by Standard & Poors rating agency (Gene & Song, 

Empirical Examination of the Basel II Proposals for Asset 

Securitization, May 2003). The confidence level for BBB rating does 

not reflect the current rating of any banks in South Africa and is 

selected purely for the purpose of developing the model. The final 

distribution obtained from Monte Carlo simulation explains that at 

99.65 percent confidence, the bank will not need more than the 

required liquidity over a six-month period in the event of facing 

insolvency. The bank would require that much liquidity in six months 

to cover its obligation. Similar to simulating loss data into Monte Carlo 

simulation, the final distribution states the total loss the bank will face 

at a specific confidence level will not exceed that amount. For example, 

if the Monte Carlo simulation gave the output of R5 billion of liquidity 

required at a confidence level of 99.65 percent, this result would be 

interpreted as saying there is a 99.65 percent confidence the bank will 

not require more than R5 billion worth of liquidity over a six-month 

period when facing insolvency. The final output from Monte Carlo 

stating the liquidity required will be termed as liquidity at risk (LaR) 

over six months at 99.65 percent confidence. This is because failure to 

provide the required liquidity of the value LaR in six months would 

result in the bank facing insolvency when impacted by liquidity risk. 

Also, if LaR increases over the next period starting from 2011, this 

would indicate the bank is facing greater liquidity risk and would 

require more liquidity within the six-month period to overcome the 

stage of insolvency. Therefore, higher LaR figures can be defined as 

higher liquidity risk.  
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Application of Binomial and Black-Scholes Models  

The next stage of the process is to develop a predicting model 

that would allow banks to measure the likelihood of failing to meet 

their obligation under liquidity risk. This would provide an overview of 

what extent liquidity risk has on the bank’s failure to meet its 

obligation. This model is directly related to liquidity risk being LaR, but 

uses the LaR values, i.e., required liquidity to predict the likelihood of 

facing bankruptcy. This still remains an estimate and not an exact 

measure because the amount of data available to reach maximum 

accuracy remains limited. The study investigates the common pricing 

formula being the Black-Scholes pricing formula, which states the value 

of entering into either a call or put option contract. Black-Scholes can 

be expressed in the following way: 

                                                                                                     (3.1) 

Where:  

S = Stock price of the bank traded in the market. 

K = Strike price of the stock at the point of exercising the 
option.  

(T-t) = Period of exercising the option defined as a 
fraction of 12 months. 

σ = Volatility of the stock price per annum. 

r = Risk-free rate directly obtained from Bloomberg. 

   
   

 

 
     

  

 
      

        
 . 

               . 

            are cumulative distribution functions for the 
normal distribution (directly calculated using the built-in 
function in MS Excel 2007). 

 

The following assumptions are made while applying the above 

Black-Scholes model to value the stock option: 

 Volatility of the stock price remains unchanged during the 

one-year period.  
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 The stock can be sold short. 

 There are no costs associated with selling the stock, i.e., 

when exercising the put option. 

 There is no risk of default. 

 The strike price taken by the bank is greater than the 

stock by R1, i.e., point of arbitrage. 

 Early exercise of the option is not permitted, i.e., the 

option is European. 

In the event of being impacted by liquidity risk, banks will need 

to source enough funding equal to LaR calculated previously from 

simulation to remain operatable and avoid being liquidated. To have 

100 percent guaranteed cash on hand, which will be enough to prevent 

insolvency, the bank must enter into a put contract, which gives it the 

right to sell the shares to a third party, securing enough cash as 

funding. The value of this put option based on Black-Scholes model can 

be expressed in the following way: 

                                                                         (3.2) 

For the bank to overcome liquidation and meet its obligation, it 

must secure cash equal to the value of the put option. Once the value of 

the put option is exercised, it provides the bank with the cash from the 

sale of its stock. The only risk is if the third party, i.e., the buyer to 

whom the put contract is entered with, are already liquidated and do 

not have any security to meet the contract requirement in providing the 

cash to purchase the stock. However, this scenario is not considered 

and it’s assumed that once the bank exercises its put option by selling 

all the shares it holds during the period stated on the data set, it is 

guaranteed to receive the value in return for selling the stocks.  

For the bank to remain solvent, i.e., to meet its liquidity requirements, 

the total value of the put option from the B-S model obtained by selling 

all the shares must either equal or exceed the calculated liquidity 
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required (LaR) from Monte Carlo simulation. This requires the bank to 

obtain funds worth the amount equal or greater to LaR within six 

months. Failure to obtain this will result in insolvency. The boundary 

parameters can be set as follows: 

If                                                    in six months,  

then the bank is solvent = S.  

If                                                   in six months,  

then the bank is insolvent = IS.  

The final outcome for the bank either going into IS or S is added 

for each period as shown in the table below. 

Figure 3.2 
Table Showing the Outcome of Bank Entering “S’ or “IS” 

 

From the table above,       and     . 

Using the summary of the outcome above, the probability of 

experiencing the stage of insolvency, IS, will be calculated using the 

binomial distribution formula shown below: 

                            
  

            

                                    (3.3) 
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Where    = the number of data period, i.e., June 1998 to June 

2010,  

   
   

        
 . 

The probability of facing insolvency, IS, will show the likelihood 

of the bank not meeting its obligation within the six-month period to 

overcome liquidity risk and thus face the risk of declaring bankruptcy. 

Finally, this provides an overview of the liquidity risk based on LaR 

value and the probability of not being able to secure enough cash equal 

to LaR within six months and thus facing insolvency.  

Application of Merton’s Asset-based Model  

Based on an earlier publication by the author (“Development of 

Stochastic Model to Evaluate Economic Capital for Concentration 

Risk,” 2008), it was proved that Merton’s asset-based theory can be 

used to build default correlations for measuring concentration risk. 

Similar to the binomial model, Merton’s asset-based theory will be used 

in this paper to calculate the probability of facing insolvency and 

compared with the results from binomial distribution.  

The point of liquidity risk is significant when the value of assets 

exceeds the value of liabilities as shown by Bessis (2006). 

In Merton’s asset-based model, it can be shown that when the 

value of a firm’s assets approach the point of callable liabilities (as 

shown below), a minimum point of default is triggered.  
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Figure 3.3 

Merton’s Asset-based Model Showing the Point of Callable Liabilities 

 

At the point of market value of the assets approaching callable 

liabilities (point of     ), the firm begins to feel liquidity pressure 

because it has already defaulted on its first obligation, i.e., failed to 

make payment to its creditors. Therefore at this point, as highlighted by 

Merton’s asset-based model, this is a perfect scenario of the bank’s 

failure to meet its obligation and it can be shown that the probability of 

a bank defaulting its payment can be calculated using the approach in 

the later section. 

The approach taken here is pure mathematics involving trial and 

error. First, a model is developed using the asset distribution of the 

bank over the data period obtained earlier. The distribution is fitted 

over the best fitting curve that is statistically possible using trial and 

error. The only curve the asset distribution is not fitted with would be 

the binomial distribution because this would create an overlap with the 

binomial model used previously.  
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The asset distribution is fitted to the following probability 

distribution curves as recommended by “The Professional Risk 

Manager’s Handbook: A Comprehensive Guide to Current Theory and 

Best Practices” (2006), which is commonly used by risk managers 

worldwide:  

 Lognormal distribution 

 Inverse Gaussian distribution 

 Poisson distribution 

 Uniform distribution 

 Normal distribution 

The asset distribution curve from the bank’s data set over the 

entire period from 1999 to 2010 is tried on each of the probability 

distribution curves and checked for any abnormal kurtosis arising that 

can result in very thick tails. An abnormal kurtosis would result in 

assets being overstated and can increase the liquidity gaps, which 

would finally overstate the liquidity risk. After the trial-and-error 

process, the inverse Gaussian distribution gave the most normal and 

perfect fit for the asset distribution. Therefore, the asset distribution 

can be defined as an inverse Gaussian probability density function 

defined in the following way: 

                                                     
 

                                                   (3.4) 

Where x = the value of the asset, i.e., the main variable,  

λ = the shape parameter, and 

  = the mean of the Gaussian distribution.  

The probability of the bank reaching insolvency can be estimated 

by calculating the area under the above probability density function for 

       ). This can be done by integrating the inverse Gaussian 
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probability density function over the asset interval between 0 and 

      as shown below. 

                                                      
 

                    
    

 
                             (3.5) 

The value λ is determined by looking at the different probability 

density function chart as shown below in Figure 3.4 

Figure 3.4 
Chart for Various Curves Fitting Inverse Gauss Distribution 

 
(Rausand, Marvin, and Arnljot Hoyland. System Reliability Theory. 247.) 

 

Each Gaussian curve is compared to the fitting curve obtained 

from the distribution of the bank’s assets done previously. The best 

fitting distribution of the assets, being inverse Gaussian distribution 

obtained using @RISK Industrial, is as follows. 

Figure 3.5 
Best Fitting Curve With Inverse Gauss Distribution 
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The best fitting curve in Figure 3.5 is very similar to the red 

curve in Figure 3.4 because both curves are positively skewed with the 

same height at the peak points, therefore the value of λ = 0.2. The 

integration of inverse Gaussian function is very complex and therefore 

the trapezium rule is used as an approximation to estimate the 

probability function. The trapezium rule can be used in the following 

way:  

                         
 

 
                          

     

 
                      (3.6) 

Where    
     

 
  with n being the number of widths between 

the intervals in the trapezium. The value of   is determined by 

iterating the width into the above formula until the final probability 

converges.  

The value of        is calculated by determining the best 

polynomial curve over a data set plotted between the bank’s total assets 

and liabilities over the period June 1998 to June 2010 as shown below. 

The degree of fitting is measured by the best R^2 (R-squared) achieved 

using the best curve fitting option in MS Excel.  

Based on the best R-squared achieved, being 98.55 percent, the 

best fitting curve is found to be expressed in the following way. 

Figure 3.6 
Graph Showing the Best Fitting Linear Curve 
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The best fitting curve can be expressed as follows: 

                

where y is value of liabilities and x is value of assets.  

To determine     , which would complete the integration in 

equation 3.5, the point of callable liabilities from Merton’s asset-based 

model in Figure 3.3 is taken as the point when liquidity risk begins to 

enter into the bank. This is the first stage when the bank fails to meet 

its obligation, i.e., defaults on its payment due to liquidity shortage. At 

the point of callable liabilities,      can be defined in the following way:  

     = point of callable liabilities = value of liabilities. 

Therefore, the asset value      at the point of callable liabilities 

is equal to liabilities, and 

  =   =     . 

The best fitting polynomial can be found as follows by solving for 

x, which equals to     , 

                    . 

Finally the value of the bank’s asset at the point of callable 

liabilities      where it fails to secure enough liability to cover its 

obligation can be equated and calculated in the following way using the 

formula below, 

                     . 

Therefore, 

          in R’m. 
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The value of asset as at      is equal to R 7 billion and can be 

used to calculate the integral in equation 3.5 and thus the final 

measure, being the probability of a bank defaulting its obligation, can 

be calculated by completing the trapezium formula in equation 3.6. 
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4 Monte Carlo Simulation  

Monte Carlo simulation was pioneered for derivative valuation 

in 1977 by Phelim Boyle. The process of simulation involves statistical 

sampling, a method that randomly selects a specific number between 

the given ranges and executes the selection based on uncertainty. This 

level of uncertainty is covered by the Monte Carlo method viewing the 

maximum possible scenarios and the number or the selected output is 

matched with these scenarios. For the simulation to be accurate, it’s 

recommended to provide 10,000 scenarios or more. The more 

scenarios are utilized by the random generator, the greater the accuracy 

of the simulation. Other sampling techniques are also available, such as 

Latin hypercube sampling. In this study, Monte Carlo is used because 

it’s the most common and effective tool for financial risk modeling 

purpose.  

For measuring liquidity risk in this paper, LaR was calculated 

using Monte Carlo simulation. The first step taken was in finding the 

best statistical fitting curve for the liquidity gap data distribution 

shown below. 

Figure 4.1 
Data Set for Liquidity Gaps 

 
(Note: These figures are not actual.) 
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The data distribution for the liquidity gap above is fitted with the 

best fitting curve as shown below. 

Figure 4.2 
Data Distribution of Liquidity Gap 

 

The best fitting distribution, being the lognormal distribution 

above, is then simulated using the Monte Carlo method by applying 

10,000 iterations of various uncertain or risk scenarios generated 

within the program. The software used is @RISK Industrial and gives 

the final Monte Carlo results (shown in section 5). 
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5 Results  

Monte Carlo Simulation Output Measuring Liquidity Risk 

Using @RISK Industrial, the liquidity gaps from the data set 

underwent Monte Carlo simulation to calculate the liquidity 

requirement within a confidence level of 99.65 percent over a six-

month period.  

The simulation results are as follows. 

Figure 5.1 
Monte Carlo Simulation 1 

 

 
A second simulation was run using the same data set to ensure 

that Monte Carlo is consistent. 

Figure 5.2 
Monte Carlo Simulation 2 
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Both the simulation converged to the exact LaR value of 0.512 

x10^12, which equates to R512 billion worth of liquidity required by the 

bank within six months to remain solvent. The results also show there 

is 99.65 percent confidence level that the required liquidity within six 

months will not be more than R512 billion inclusive of liquidity buffer. 

This provides a measure of liquidity risk for the bank.  

Probability of Insolvency Using Binomial and Black-Scholes 

Models 

Based on the Black-Scholes model, the total value of the put 

option is calculated by multiplying the value of the put option by the 

total shares held over the specific period in the data set. 

Figure 5.3 
Stock Value Using B-S Model and Total Value of 

Put Compared With LaR 

 

 



 

23 

  
Application of the binomial model gives the final probability of 

IS as shown below in the table.  

Figure 5.4 
Table Showing the Results From the Binomial Model 

 

 
Based on Black-Scholes and binomial models, the probability of 

the bank becoming insolvent, i.e., failing to meet the liquidity 

requirement of LaR within six months, is equal to 60.53 percent.  

Probability of Bank Defaulting on Payments Using Merton’s 

Asset-based Model 

Based on Merton’s asset model, the point of callable liabilities 

      is R7 billion. 

Applying the trapezium rule with the width h converging to R 

0.8 billion between the interval R 1 billion and R 7 billion.  

Figure 5.5 
Table Showing the Mean Asset Value Using 

the Trapezium Rule 
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Figure 5.6 

Calculation of Equation 3.6 Using 
the Trapezium Rule 

 

The final probability based on Merton’s asset-based model can 

be calculated using the results from the trapezium rule. (All 

calculations are done in MS Excel 2007.) 

Figure 5.7 

Table Showing the Final Probability 

 

 

Based on Merton’s asset-based model, the probability of the 

bank defaulting, i.e., failing to meet its payment obligation over the 

next six months, is 25 percent.  

(Note: Data used are not real and do not originate from a 

particular bank. Results from the model should not be used to draw any 

conclusion on the state of liquidity risk for any bank.)  
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6 Conclusion 

The study shows that measuring liquidity risk for an emerging 

bank in South Africa is possible based on the measurement of liquidity 

gaps during a six-month cycle and simulating them using the Monte 

Carlo method. Also, the results show that the risk of facing insolvency 

can be measured using the Black-Scholes model, which allows banks to 

estimate their liquidity requirement over a six-month period.  

The results have proved that using Merton’s asset-based model,  

the probability of this bank not being able to meet its payment 

obligation can be estimated. These estimates, however, do not take into 

account the volatility of the stock prices, which can later have an impact 

on the decision to enter either into a put contract or retain the shares 

until stock prices increase. The models used in this study have shown 

that a simulation-based method can provide a measure of liquidity risk 

on those assets that are pro-cyclical and show a behavior that can fit 

into a model. In considering the liquid assets that can be converted to 

cash and provide immediate liquidity, banks must include various 

scenario-building processes into their measurement framework. The 

measurement framework provides a single factor scenario that is purely 

based on the bank’s liquidity gap. The type of liquidity gaps used in this 

study for measuring liquidity risk is a static liquidity gap that results 

from existing assets and liabilities only. To improve the accuracy of this 

model, it’s important to measure dynamic liquidity gaps. Liquidity gaps 

that are dynamic add the projected new credits and new deposits to the 

amortization profiles of existing assets. For this to be implemented, 

forecasting techniques need to be applied that can project the future 

movement of these assets and liabilities. For the results to be more 

accurate, the idiosyncratic factors driven by a macro economic cycle 

should be factored into Merton’s asset-based model using a multifactor 

correlation matrix that gives a covariance factor. However, the 

challenge still remains with the Black-Scholes model as this formula is 

bounded to pricing of stocks and risk-free return from the bank’s risk 

profile.  

“To improve the 

accuracy of this model, 

it’s important to 

measure dynamic 

liquidity gaps.” 
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In conclusion, the models used in this study provide a static 

framework for measuring liquidity risk. However, the challenge for 

banks would be in the following areas when using these models: 

 Integrating this model with the centralized database that 

can form a measurement framework per Basel III 

requirements. 

 Developing the measurement process that uses the 

stochastic model into a supervisory review requiring 

continuous monitoring as per Basel III. 

 Differentiating the final results from nonstatic dynamic 

liquid gaps as opposed to using data directly from static 

liquidity gaps. 

 Inclusion of third-party risk coverage that are involved in 

buying the stocks from the bank into the model to define 

a more accurate liquidity risk measure within a six-month 

holding period. 

 Measuring the ability of the banks to market its stocks 

prior to entering the put contract. This is necessary to 

raise public confidence prior to selling the shares and 

must be taken into account when estimating the bank’s 

liquidity position. 

 The current model does not take account of withdrawal 

rate and, for liquidity position to be measured more 

accurately, the withdrawal rate of funds from customers 

must also be inclusive. 
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