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Abstract

The prediction performance of the Lee-Carter model for long-term mortality forecast is

our focus in this paper. To make a sound assessment, we set up a backtesting methodol-

ogy to evaluate the prediction performance of the Lee-Carter model. We propose to use the

Kolmogorov-Smirnov test to assess how close the percentile histogram resembles uniform dis-

tribution, which can complement the assessment of probabilistic prediction. We address two

issues with implementing the Lee-Carter model: robustness and drift uncertainty. We propose

quantile regression (QR) for robust parameter estimation of the model for time-varying index

kt. We use the bootstrap method to incorporate the drift uncertainty. Finally, we illustrate our

proposed methods through examining the model performance on our simulated data as well as

actual mortality data from different countries. The findings of this study suggest that the QR

method improves the prediction performance of the Lee-Carter model and there exists evidence

for trend changes in male mortality in the last century.
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1 Introduction

The uncertainty in mortality evolution is recognized as an important risk factor for actuarial

consideration that is now indispensable in mortality projection. See Pitacco (2004); Cairns

et al. (2006); CMI (2005) for detailed review and extensive discussions on the stochastic nature

of mortality improvement. This means that any mortality prediction should include both point

estimates of future mortality and their associated probability distributions.

Because mortality rates tend to change at different speeds at different ages, it is often

necessary to adopt a mathematical model that can describe the profile of mortality improvement

in a compact format, and also allow reasonable assumptions about future development to

be made and examined transparently. The Lee-Carter model (1992) seems to satisfy these

criteria. The Lee-Carter model provides a simple mathematical structure that can fit the past

data reasonably well, and a flexible stochastic framework that can evolve into the region of

prediction as desired.

Since its publication, the Lee-Carter model has attracted great attention in literature con-

cerning the projection of population and mortality rates. For actuarial calculation purposes,

long-term mortality prediction is required. For example, the U.S. Social Security Administra-

tion (SSA) normally provides mortality forecasts for a horizon up to 90 years as a reference for

the life insurance industry and retirement system. Typically, forecasted mortality rates up to

60 years or more are relevant in the evaluation of many life annuity products. Therefore the

prediction performance of the Lee-Carter model for long horizon forecasts is a big concern.

It is difficult to evaluate long-term prediction performance, partially because we have to wait

a long time for the history to reveal itself and partially because the random nature needs to be

properly assessed with limited information. There are a few ex post studies of the Lee-Carter

forecast performance based on the recent mortality experience since 1992; see Lee and Miller

(2001), Bell (1997), Booth et al. (2002) for instance. The overall underestimation of recent

mortality decline by the Lee-Carter model is consistently documented in all above reported

studies. However, because these observations and the resulting conclusion are based on at most

10 new years worth of data that are still short for long-term assessment, we may wonder: Is

the underestimation phenomenon the result of the underlying structural misrepresentation of
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the model or just a result of chance?

To make a sound assessment, we adopt a backtesting framework that can be used to evaluate

the forecast performance of the Lee-Carter model with more statistical power. The difference

between backtesting and ex post examination is that, with backtesting, we can go back into

the past as far as we want, given that the data are available. This is possible because the

Lee-Carter model is mainly an extrapolative method based on purely statistical analysis, thus

involving less subjective judgment than those that make use of expert opinions at the time of

prediction. Backtesting allows us to examine how well the model would have performed overall

if the Lee-Carter model were used repetitively in the past.

We examine the prediction performance of the Lee-Carter model based on both simulated

data and actual mortality data from countries such as Sweden, Canada and the United King-

dom. We test the accuracy of point forecasts and density forecasts as well. We propose to

use the Kolmogorov-Smirnov test to assess how close the percentile histogram resembles uni-

form distribution, which can complement the assessment of probabilistic prediction. To obtain

robust parameter estimates in the model for the time-varying index kt, a component of the

Lee-Carter model, we propose the use of quantile regression (QR). From our simulation study,

we find that drift uncertainty plays a very important role in deriving the density forecasts of

future mortality. The findings of this study also suggest there exists evidence for mortality

trend changes in the last century.

The outline of the paper is as follows. The Lee-Carter model is reviewed in Section 2. The

QR method also is introduced there. The methods of our assessment are detailed in Section 3.

Simulation studies are presented in Section 4 and applications of our proposed methodology to

real data analysis in Section 5. Conclusions are made in Section 6.

2 Implementing the Lee-Carter model

2.1 Model specification

It has now been well accepted that mortality needs to be projected to allow future mortality

improvement to be taken into account in the evaluation of mortality contingent products. It is

also important to acknowledge that mortality trends have shown a great deal of uncertainty in
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the past (Pitacco, 2004). To incorporate randomness into mortality dynamics, Lee and Carter

introduced a simple yet powerful statistical model for fitting and projecting mortality. Under

the Lee-Carter framework, the log of age-specific central mortality rates are described as

log mxt = ax + bx kt + εxt , (1)

where x = 1, 2, . . . , n represent ages and t = 1, 2, . . . , t0 represent years. Hence, through the

Lee-Carter decomposition, the mortality improvement over time can be summarized with two

age factors ax and bx, and one time-varying index kt. Here kt represents the time series of

the general level of mortality, while ax describes the age profile averaged over time, and bx

determines how much, at each age, the mortality rate responds to the changes in kt.

After the Lee-Carter model is fit to a selected data set, ax’s and bx’s are treated as constants

and the values of kt are modeled by a time series. In the original paper of Lee and Carter (1992),

it is suggested that an autoregressive integrated moving average, specifically ARIMA(0,1,0), is

the most appropriate model for kt, even though in some cases other ARIMA models might be

preferable. The ARIMA(0,1,0) is equivalent to a random walk with drift and can be written

as follows:

kt = kt−1 + c1 + ξt, (2)

where ξt is N(0, σ2), independently and identically distributed. The drift term of this random

walk, c1, and its standard deviation, σ, are estimated from k1, k2, . . . , kt0 . Forecasts of future

values of kt (kt0+1, kt0+2, . . .) can then be recursively generated using formula (2). More specif-

ically, to forecast the time-varying index at time t0 + n given the data available up to t0, the

following equation is used:

kt0+n = kt0 + n · c1 +
n∑

j=1

ξj . (3)

2.2 Density forecasts of mortality rates and life expectancy

The projected kt (t > t0) can then be substituted into formula (1), together with the estimated

ax and bx, to calculate the forecasted age specific mortality rates in all future years. Assume the

force of mortality µxt is constant within each age band. Denote as px(t) the survival probability

that an individual aged x in year t reaches age x + 1, as qx(t) = 1 − px(t) = 1 − e−µxt the
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corresponding death probability. Consider e0(t), the life expectancy1 at birth of newborns in

year t, which can be calculated by

e0(t) =
1

2
+

∞∑
n=1

n−1∏
x=0

px(t) ,

=
1

2
+

∞∑
n=1

e−
∑n−1

x=0 exp(ax+bx kt) . (4)

Formula (4) shows that the life expectancy e0(t) is a function of the predicted time varying

random variable kt. This means the stochastic nature of the time series kt is passed to all

variables derived from mortality rates, including life expectancies. The resulting distribution

for e0(t) can thus provide a probabilistic description of the variable in the future year t. The

probability density forecast contains not only the “best” point forecast of our variable of interest,

but also the information on how likely the variable may differ from the point forecast. In

this paper, we are interested in using e0(t) as a summary variable to check the prediction

performance of the Lee-Carter model. We will examine the errors in its point forecasts and the

validity of its density forecasts.

2.3 Non-robustness of least squares and a solution: quantile regres-

sion

Clearly, the accuracy of the model for kt determines the quality of mortality forecasts. In

the original Lee and Carter paper, the drift term for kt (in model (2)) is estimated using the

method of ordinary least squares (LS). That is, the parameter c1 is chosen to minimize the sum

of squared errors:

min
c1∈R

t0∑
t=1

(∆kt − c1)
2,

where ∆kt = kt − kt−1. This leads to

ĉ1 =
kt0 − k0

t0
, (5)

1Note that the calculation for e0(t) is conducted in the so-called “period” direction because we are interested

in using e0(t) as a kind of summary variable for the mortality profile of the corresponding year. For other

purposes such as the evaluation of a life annuity contract, it is suggested that the “cohort” direction should be

used. For more details regarding the “period” or “cohort” distinction, see Pitacco (2004).
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where k0 and kt0 are the first and last values of the time-varying index for the base period.

Obviously, the estimate ĉ1 is very sensitive to the first and last years of the data and not robust

against outliers and extreme abnormal values.

In this section, we introduce a robust estimation procedure for the drift term of kt, where

the parameter c1 in model (2) is obtained by performing the optimizition

min
c1∈R

t0∑
t=1

|∆kt − c1| . (6)

The method we use in (6) is median regression, minimizing the sum of absolute deviations.

Median regression is a special case of quantile regression first introduced by Koenker and Bassett

(1978). The review paper by Koenker and Hallock (2001) outlines more recent developments

on the QR method. QR leads to estimates of specific quantiles of the response variable, in

contrast to LS which provides estimates that approximate the conditional mean of the response

variable. In particular, median regression results in estimates of the median response. QR is

robust in response to large outliers by comparison with the LS method; outliers can seriously

distort LS parameter estimates, while QR is resistant to the effects of outliers. The motivation

for the QR method comes from the need to properly handle shocks due to historic events such

as the 1918 Spanish flu epidemic and the 2003 SARS outbreak.

3 Evaluation methods for mortality forecasts

Since Lee and Carter (1992), many modifications and extensions to the Lee-Carter model have

been developed. Among those, Carter (1996) has considered a state space model for kt in

which the drift term is itself a random walk; Renshaw and Haberman (2003) have added a

second or even third bilinear term to the Lee-Carter model; Renshaw and Haberman (2006)

have introduced the cohort period effect. In general, those modifications improve the fit of

the model to some specific data. However, as shown in Dowd et al. (2008) and Cairns et al.

(2009), those models may generate implausible predictions because the models are too specific

or complicated, and parameter estimates are too sensitive. Therefore, in this paper, we don’t

attempt to test the Lee-Carter model against other alternatives, or the random walk with drift

assumption for kt against other alternatives. We have assumed that a random walk with drift
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is the forecasting model for the time-varying index kt always used. We are interested in testing

how well the Lee-Carter model would have performed overall if it were used repetitively in the

past. We are also interested in examining the robustness of Lee-Carter model prediction when

the data are subjected to occasional large shocks to human mortality, such as the 1918 Spanish

flu pandemic.

In this section, we describe the evaluation methods used to assess forecast performance of the

Lee-Carter model. Because the stochastic mortality modeling approach provides point forecasts

and density forecasts as well, we assess the prediction performance in both ways. We consider

the forecasts within a 30 year horizon as short-term forecasts and beyond a 30 year horizon as

long-term forecasts. Instead of using mortality rates at any specific age as a benchmark, we

use life expectancy at birth e0 as an overall measure for the age-specific mortality pattern of

each year.

3.1 Backtesting Framework

Following Dowd et al. (2008), we refer to our evaluation framework as a backtesting method.

Here is what we are going to do in backtesting.

(i) We first select a base period which is used to estimate the parameters ax, bx and kt in

equation (1). In this step, we adopt the maximum likelihood estimation (MLE) approach,

first proposed by Brouhns et al. (2002).

(ii) Then the time-varying index kt is fit to ARIMA(0,1,0) by either the LS method as in

original Lee-Carter paper or the QR method as described in the previous section.

(iii) Forecasting starts from the last year of the base period, which is normally referred to as a

“jump off ” year. With each given base period and fitted Lee-Carter model, we can derive

forecasted mortality rates based on the forecasted values of kt, together with estimates

ax and bx. For a selected forecast window, we are able to obtain sequential values of

forecasted life expectancy ê0(t) corresponding to different horizons within that window.

We are also able to derive the probability density distribution for each e0(t). In this

paper, because we are interested in long-term forecast performance, our forecast horizon

is up to 60 years whenever possible, based on data availability.
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(iv) Finally, we compare our forecasts for e0(t) with the actual outcomes to obtain various

forecast performance measures that are provided later in this section.

It is worth remarking that the sequential forecasts ê0(t) comprise different horizon forecasts.

Generally, longer horizons lead to less accurate forecasts. We should only compare the accuracy

of forecasts with similar horizons. To make a more formal statistical test, we need to construct

a sample of forecasts for each horizon. In the simulation study described later, we generate

10,000 scenarios for each simulation scheme to make the assessment. The purpose is to check

the overall model performance under various situations.

In the analysis of real data, we perform a rolling procedure using fixed length base periods

over historical data as the jump off year moves forward through time. Each time, we refit the

model to the chosen base period of data, and obtain the forecasts correspondingly. In this way

we can check the overall dynamic prediction performance of the Lee-Carter model with more

statistical power.

We evaluate the goodness of forecasts by implementing the assessments described in the

following sections.

3.2 Forecast error criteria

We have considered various error measures to examine the accuracy of the forecasts for e0(t),

including the root mean square error (RMSE), the mean absolute percent error (MAPE), the

average error (bias), and the proportion of actual values that fall within the 95 percent prob-

ability interval (coverage). The better forecasts should come up with smaller values of RMSE,

MAPE and bias, while the actual coverages should be close to the nominal one, e.g., 95 percent,

as used in this paper. These measures provide criteria for model performance in terms of best

point forecasts as well as a probabilistic profile.

3.3 Percentile histogram and Kolmogorov-Smirnov test

In simulation and real data analysis, percentile values of the real e0(t) in the probability distri-

bution can be used to check the adequacy of probabilistic prediction. If prediction is correct,

the frequency distribution of the percentiles should closely resemble a standard uniform distri-
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bution. A common way to check this property is to draw percentile histograms as in Lee and

Miller (2001). Percentile histograms can also provide intuition into the relationship between

the outcomes and their associated distributions. If the plot is more clustered in the center than

in the tails, it indicates that the variation of the variable is overpredicted, and vice versa. When

more values fall on the right side, then we are underestimating the true value most of the time.

To make comparisons, a statistical test of how close percentiles resemble the uniform distri-

bution is desirable. In the following we briefly describe the idea of using the Kolmogorov-

Smirnov test to evaluate the percentiles. A more detailed treatment on the Kolmogorov-

Smirnov statistic and its relevant results is given in Appendix A.

Let {p1, . . . , pn} be the independent and identically distributed (iid) sample percentiles at a

specific forecast horizon and F̂n(s; p1, . . . , pn) be the empirical cumulative distribution function

(CDF) function based on the data p1, . . . , pn, i.e.,

F̂n(s; p1, . . . , pn) =
1

n

n∑
i=1

I(pi ≤ s),

where I(·) is an indicator function. Then we can define the empirical process Bn(s) as

Bn(s) =
√

n (F̂n(s; p1, . . . , pn)− s). (7)

Notice that s in formula (7) is the CDF of the standard uniform distribution. In Proposi-

tion A.1 of Appendix A, we have shown that {p1, . . . , pn} is a sample from a standard uniform

distribution asymptotically. With the help of the strong law of large numbers, we can show

that, almost surely,

sup
0≤s≤1

|F̂n(s; p1, . . . , pn)− s| → 0.

This justifies the idea of comparing the empirical CDF of sample percentiles to the standard

uniform distribution.

Now define the Kolmogorov-Smirnov statistic as

ks.statistic = sup
0≤s≤1

|Bn(s)|. (8)

In Proposition A.3 and Corollary A.4 of Appendix A, it is shown

sup
0≤s≤1

|Bn(s)| → sup
0≤s≤1

|B(s)|, in distribution,
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where {B(s)} is a standard Brownian bridge. This result gives the asymptotic distribution

of the ks.statistic when p1, . . . , pn are iid sample points. The critical value at 95 percent

confidence level for Kolmogorov-Smirnov test is 1.36, which can be used to determine whether

to accept or reject the null hypothesis at the 5 percent level.

In the context of dynamic prediction of the Lee-Carter model, the iid condition may be

violated. In this case, it can be shown that under the null hypothesis that {p1, . . . , pn} follows

the standard uniform distribution, the asymptotic distribution of the ks.statistic exists, but its

actual form depends on the correlation structure of {p1, . . . , pn}. Hence, when the iid condition

does not apply, the inference based on the Kolmogorov-Smirnov test may not be accurate. But,

the value of ks.statistic can still be used as a guideline to rank the goodness of forecasts of

density distributions using different methods.

4 Simulation study

In applying the Lee-Carter model for long-term mortality prediction, two types of problems

need to be distinguished: one is the drift in the values of kt; the other is the structural change

in model components ax, bx and kt. Drift is a problem related to the effectiveness of model

estimation, while the structural change is a problem of model specification. Oftentimes, we feel

that the two problems are confounded together and this makes it difficult to diagnose. The

complete solution to this issue is beyond the scope of this paper. What we have attempted

in the paper is to isolate the problem of model effectiveness by using simulated data and then

to assess model prediction performance by using real data. Comparing the behavior of model

performance over different data sets (simulated and real data) allows us to detect potential

structural change in the real data to some extent.

We address two issues in our simulation study. First, we investigate the importance of

taking account of drift uncertainty in deriving the density forecasts based on the Lee-Carter

model. Secondly, we would like to see if quantile regression (QR) can improve robustness of

parameter estimation of the Lee-Carter model, thus resulting in more reliable forecasts overall.

In particular, we examine the model behavior when the underlying data is subject to irregular

jumps, mimicking the situation when catastrophic or pandemic events happen. Therefore, we
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generate two cases of data for each concerned population.

• Case 1 represents the situation where the underlying data truly follows the Lee-Carter

model;

• Case 2 represents the situation where the underlying data follows the Lee-Carter model

most of the time but the innovations in the dynamics of time-varying index kt are subject

to rare irregular large shocks.

4.1 Simulation scheme

In this part, we provide steps used to generate underlying raw data. The steps are applied to

both cases 1 and 2 unless they are mentioned specifically.

Step 1. Start with given data Dxt and ETRxt from a specific population with t0 + n

consecutive years, where Dxt is the number of deaths at aged x in year t and ETRxt is the

exposure-to-risk or the person-years lived by people aged x in year t. Later, we will use the

first t0 (= 40 in this paper) years as the base period and next n years as the forecast window.

At this step, the MLE procedure of the Lee-Carter model is applied to the whole period. This

provides us a fixed set of {ax, bx, kt} as seed to generate the raw data that follow Lee-Carter

model.

Step 2. Compute the sample mean and standard deviation for the difference of kt, denoted

as kmean and ksd.

Step 3. Generate a random sample ξt with sample size t0 + n, mean 0 and standard

deviation ksd. For Case 1, a normal sample is generated. As for Case 2, the sample to be

generated contains 95 percent of the sample points following a normal distribution with standard

deviation ksd/
√

2.2 and 5 percent of the sample points following a normal distribution with

standard deviation five times as large as the previous ones. In other words, ξt is a mixture of

normal random variables with the following CDF:

Fξ(x) = 0.95 Φ(x; 0, k2
sd/2.2) + 0.05 Φ(x; 0, (5 ksd)

2/2.2), (9)

where Φ(x; µ, σ2) is the CDF of a Normal N(µ, σ2) r.v., and 2.2 is a scale factor2 so that the

2In our simulation study, we use a scale factor 2.2 to ensure that the random shocks of the model have the
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standard deviation of the mixture normal is exactly ksd. Case 2 represents the situation where

irregular large shocks may happen occasionally.

Step 4. Simulate raw Lee-Carter data as follows. First, a sample path of kt for t0 +n years

is computed as

kt, path = k0 + kmean t +
t∑

j=1

ξj.

Then this path kt, path, together with estimates ax and bx (from Step 1) and ETRxt, generates

a new set of deaths D∗
xt that follow a Poisson distribution D∗

xt ∼ Poisson(λxt) with λxt =

ERTxt exp(ax + bx kt, path).

This gives us raw Lee-Carter data (D∗
xt , ETRxt) from the seed {ax, bx, kt}.

Step 5. Now we apply the backtesting procedure (i) to (iv) described in Section 3 to the

data (D∗
xt , ETRxt). We use the first t0 years as the base period to find ax,sim, bx,sim, and kt,sim

which are then used to predict mortality rates in the chosen forecast window.

Here, we need to give some details on how to use the bootstrap method to derive forecasted

distribution for variable e0(t). The basic idea is to generate enough future samples so that the

sample distribution can approximate the true one. We consider two types of mortality forecasts.

(a) Assume that the drift term in the model for kt is known with certainty3 – a case referred

to as “drift certain” (DC)

In this case, we only need to incorporate the innovations from kt in generating the future

path. A bootstrap method is conducted by resampling a set of errors {ξ∗t }, t = t0 +

1, · · · , t0 + n, from

{ξt,sim = kt,sim − kt−1,sim}.

ξ∗t provide a representation of variations in the future path of kt that lead the realized

outcomes to differ from the forecasted ones.

same standard deviation for Case 1 and Case 2. An alternative simulation design such that the regular random

shocks have the same standard deviation as in Case 1, but the irregular ones have a bigger standard deviation

is also of interest and can easily be obtained from modifying (9).
3Denuit (2008) provides an analytic method to derive the quantiles and distribution function for e0(t) in any

future years using comonotonic approximation under this assumption.
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(b) Assume that the drift term in the model for kt is only estimated, thus the “true” value is

unknown4 – a case referred to as “drift uncertain” (DU).

We think this is a more plausible case. To incorporate the forecast error due to the

estimate of the drift term in kt, we use a bootstrap to create uncertainty for the drift

term. For given kt,sim, a sample of perturbations with size t0 is generated from {ξt,sim},
now denoted as ξ∗t,sim, t = 1, · · · , t0. Combined with kmean.sim, the sample mean of ξt,sim,

a new k∗t,sim is generated as

k∗t,sim = k0,sim + kmean.sim t +
t∑

j=1

ξ∗j,sim.

Future innovations in the path of kt in case DU is generated from k∗t,sim as in (a). The

future mortality rates and life expectancy e0(t) are then calculated respectively.

Mortality forecasts (a) or (b) will be repeated many times until the density or quantiles of

predicted values can be computed reliably. In our simulation, we choose 10,000 as the total

bootstrap number to generate “simulated” forecast distribution for e0(t) for each raw data set.

Sample medians are used as forecasted values ê0(t), compared with its corresponding “true”

values from Step 4. As a result, we can derive RMSE, bias, etc. We also record if the 95 percent

prediction interval at each horizon covers the true value with this data set.

Step 6. Repeat step 3 to 5 many times to generate Lee-Carter model scenarios. In this

paper, 10,000 scenarios are generated. Overall we have conducted 10,000 by 10,000 simulations

for each simulation scheme. This requires lengthy simulation times that could take up to half

year on a typical personal computer. To speed up, we use the parallel computing package Rmpi

in R (Yu, 2002).

4.2 Density forecasts with drift uncertainty

It is clear that the estimation of the drift term is central to the forecasts. Due to the non-

stationary nature of the random walk and the fact that we only have limited amount of data,

the drift estimate must inevitably be subject to a degree of uncertainty. To properly reflect

4In this paper, other types of parameter uncertainty are ignored. One reason is because the parameter

uncertainty from ax and bx is relatively minor (see Liu and Braun, 2010, for details).
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this uncertainty in the forecasts, we adapt the bootstrap method to generate the forecast

distribution of e0(t). Details have been given in Step 5 in the previous subsection. In this part,

we examine the effects of incorporating drift uncertainty in the mortality prediction.

Figures 1 to 3 show the simulation results using the seed from Swedish female mortality

rates from 1907 to 2006. All data used in this paper are downloaded from www.mortality.org.

Figure 1 presents various forecast errors: RMSE, MAPE, and average bias. Figure 2 gives the

statistics related to assess the adequacy of density forecasts: Kolmogorov-Smirnov statistics,

coverage, and average confidence interval width. In all plots, we compare the results of in-

volving drift uncertainty (labeled as DU) or not involving (labeled as DC), for Cases 1 and

2 respectively. The left panel of the figure shows the results based on Case 1, the right one

on Case 2. Corresponding simulation results using the seed from Swedish male mortality at

the same period are given in figures 13 to 15 in Appendix B. The estimation and prediction

methods used in figures 1 to 3 and figures 13 to 15 are the LS method.

We observe from this study that

• In terms of forecast errors, there is no clear advantage with DU, though many times but

not always we obtain smaller forecast errors with DU.

• In terms of prediction distribution, Kolmogorov-Smirnov statistic for DC density becomes

larger as forecast horizon goes longer. However, Kolmogorov-Smirnov statistic for DU

density is stable and stays around its critical value 1.36 for Case 1 over all horizons. For

Case 2, although the value of Kolmogorov-Smirnov statistic for DU density is bigger than

1.36, it is significantly smaller than its counterpart of DC density.

• The goodness of forecasts for density can be further examined through coverage plots

(the second row panel in Figure 2). The results are consistent with Kolmogorov-Smirnov

statistics, showing that the coverage with DU in Case 1 is very close to the nominal one,

e.g. 95 percent, while the coverage with DC drops in a linear pattern from 93 percent to

about 75 percent. Therefore, taking account of drift uncertainty can provide remarkable

effects for the long term distribution prediction. Otherwise, the prediction confidence

intervals will be too narrow to reflect the true risk in mortality. See the plot of average

confidence interval widths as in the third row panel of Figure 2).
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Figure 1: Simulation study over the effect of drift uncertainty on forecast performance. The

seed is obtained from Swedish female mortality data from 1907 to 2006. Forecast errors of

RMSE, MAPE, and bias for e0(t) for 60-year horizons are presented for both Case 1 (left

column panel) and Case 2 (right column panel).
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Figure 2: Simulation study over the effect of drift uncertainty on forecast performance. The

seed is obtained from Swedish female mortality data from 1907 to 2006. Density forecast for

e0(t) for 60-year horizons are assessed by Kolmogorov-Smirnov statistics, coverage and average

confidence interval width for both Case 1 (left column panel) and Case 2 (right column panel).

The critical value 1.36 from Kolmogorov-Smirnov test and the nominal coverage 95 percent are

also marked.
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Figure 3: Simulation study over the effect of drift uncertainty on forecast performance. The

seed is obtained from Swedish female mortality data from 1907 to 2006. Percentile histograms

for forecasts e0(t) for five-, 10-, 20-, 40- and 60-year horizons are presented for Case 1 (DC),

Case 2 (DC), Case 1 (DU) and Case 2 (DU), respectively.
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• Percentile histograms in Figure 3 reveal that the actual distribution of percentiles from

DC tends toward the two ends 0 and 100 as seen in the first two row panels. The longer

the forecast horizon is, the heavier the tails of the histogram are. This indicates that the

forecasts underpredict the degree of uncertainty for variable e0(t). In other words, the

true value is likely to fall outside of 95 percent prediction intervals more than 5 percent of

the time if the density forecasts show this kind of pattern. However, with a DU density

(the last two row panels of the figure), the percentile distribution is very close to uniform

between 0 and 100 as expected.

• For all measures discussed above, Case 1 displays better forecast performance than Case

2. This is because the LS method is less efficient in Case 2, where the underlying data

contain irregular shocks.

So far, we have shown it is necessary to take account of drift uncertainty in deriving prob-

abilistic forecasts. Therefore, from now on, we will only present the forecasts involving drift

uncertainty.

4.3 Quantile regression (QR) vs. least squares (LS)

In Section 4.2, all of the results are based on the LS method. We have seen that the LS method

with DU produces reasonably good forecasts for Case 1. But with Case 2, a lack of robustness

is evident in dealing with data variations. We expect that QR can perform better in this kind

of situation, where the underlying structure is subject to some irregular large shocks. More

specifically, we examine the forecast results using either LS as in the original Lee and Carter

paper or QR as proposed in this paper to fit and predict the time-varying index kt in step

[iii] of the backtesting procedure, while the rest of the steps remain the same. We present the

comparison in this section.

Figures 4 to 7 give the results of implementing LS or QR with simulated data, using the seed

from the Swedish female mortality data as in the previous section. Figure 4 contains various

forecast error measures. Figure 5 gives the assessments related to density forecasts. As before,

the left panel shows the results based on Case 1, and the right one on Case 2. The dashed lines

represent the results with LS, whereas the solid lines are from QR. We also plot the results
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using only 20-year as a base period to do prediction in those figures. Red lines are for the

20-year base period and black lines are for the 40-year base period. Figures 6 and 7 show the

percentile histograms for cases 1 and 2 respectively.

Let’s first focus on the 40-year base period generated results (black lines in figures 4 and 5).

Here are some remarks.

• In terms of forecast errors RMSE, MAPE and bias, LS performs better in Case 1, and

QR performs better in Case 2. It makes sense that LS outperforms QR in Case 1 because

LS is supposed to be optimal if the model and the underlying structure match.

• In terms of the probabilistic aspect of the prediction (see Figure 5), we see that for Case

1, the values of ks.statistic from LS are mostly smaller than the critical value 1.36, indi-

cating that we can not reject the null hypothesis—sample percentiles {p1, . . . , pn} follow

a standard uniform distribution. As a result, it shows the predicted density distributions

are adequate for Case 1. In addition, the ks.statistic from QR follows the track of the

ks.statistic from LS closely, with some improvement for at least 40 years. LS coverage,

though a little bit smaller than 95 percent, is stable and consistent. On the other hand,

QR coverage, which is also stable, is a bit higher than 95 percent—a sign of overcorrection.

As a result, the prediction intervals from QR are wider than from LS.

For Case 2, the results are reversed. QR generates lower ks.statistic values and higher

coverage than LS, showing a robustness property while the underlying data deviates from

the assumption.

• It is remarkable to notice that for Case 2, the coverage from QR is higher than the

coverage from LS, and this is usually achieved with narrower confidence intervals from

QR. This again shows the robustness of QR with data variations and limited amount of

data.

• The percentile histograms in figures 6 and 7 show that the density forecasts perform rea-

sonably well with QR, even for forecast horizons of 60 years. But with LS, the histogram

tends toward the two ends, indicating a sign of underestimation in mortality uncertainty.

They further confirm our aforementioned conclusion based on the Kolmogorov-Smirnov

test and coverage.
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We have also examined the results for other types of data, i.e. using seeds from different

countries and genders, we consistently see an improvement in forecasts by using QR in Case 2.

Additional results are provided in Appendix B, including the simulation study based on Swedish

male mortality data from 1907 to 2006, Canadian female and male mortality data from 1921

to 2006, and U.K. female and male mortality data from 1922 to 2006. We have shorter forecast

horizons for Canadian and U.K. mortality due to data availability.

Other points to note are:

• With the results based on the 20-year base period, the major conclusion about LS and QR

remains. With Canadian and U.K. mortality data (in Appendix B), the results from the

20-year base period are generally worse than their 40-year base counterpart, indicating a

sign of instability. This puts a caution to users of the Lee-Carter model. In applications,

market practitioners tend to use short base period (for example, 10 years) to calibrate the

model because the linear pattern assumption for the time-varying index kt might fit the

data better over a shorter period. We find this is dangerous because a well fitted model

doesn’t guarantee good predictions. Similar phenomenon has also been found in Cairns

et al. (2009)

However, we also notice this observation doesn’t apply to the results from Swedish mor-

tality data, both female and male. This is probably because the seeds for 40-year base

predictions are derived from the mortality data containing year 1918 when Spanish flu

took place, thus the overall uncertainty in this simulation study is bigger than the other

circumstances.

• In all of our simulations, we find a systematic problem when implementing the Lee-Carter

model. That is, the bias—calculated by taking the average of (predicted value - actual

value) over the same horizon forecasts—tends to be negative regardless of which methods

and data we use. We can not explain what causes this problem.
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Figure 4: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Swedish female mortality data from 1907 to 2006. Forecast errors of RMSE, MAPE, and

bias for e0(t) for 60-year horizons are presented for both Case 1 (left column panel) and Case

2 (right column panel).
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Figure 5: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Swedish female mortality data from 1907 to 2006. Kolmogorov-Smirnov statistic, coverage

and average confidence interval width for e0(t) for 60-year horizons are presented for both Case

1 (left column panel) and Case 2 (right column panel). The critical value 1.36 from Kolmogorov-

Smirnov test and the nominal coverage 95 percent are also marked.
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Figure 6: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Swedish female mortality data from 1907 to 2006. Percentile histograms for forecasts e0(t)

for five, 10-, 20-, 40- and 60-year horizons are presented for Case 1 for LS (40-year base), QR

(40-year base), LS (20-year base), and QR (20-year base), respectively.
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Figure 7: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Swedish female mortality data from 1907 to 2006. Percentile histograms for forecasts e0(t)

for five-, 10-, 20-, 40- and 60-year horizons are presented for Case 2 for LS (40-year base), QR

(40-year base), LS (20-year base), and QR (20-year base), respectively.
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5 Real data analysis

Based on the same idea of needing to construct a sample of forecasts to make a more formal

statistical test, we implement the rolling window procedure in the analysis of real data. For

example, consider the Canadian mortality data from 1921 through 2006. Let the base period

length be fixed at 40 years. The forecasts are then based on data from [1921 + i, 1960 + i],

where i = 0, · · · , 44. In total, we have made 45 consecutive forecasts with the 40-year base

period. Each time, the jump off year moves forward one year. As a result, we have 45 one-year

horizon forecasts, 44 two-year horizon forecasts, and so on. We examine the forecasts up to a

40-year horizon, keeping the sample size of at least six in all comparison.

Figures 8 to 11 display the results based on Canadian mortality data from 1921 to 2006, both fe-

male and male, respectively. As before, we present the forecast errors comprising RMSE, MAPE

and bias, and density forecast performance criteria including Kolmogorov-Smirnov statistics,

coverage and average confidence interval width. We also put together the results from imple-

menting LS and QR so we can compare the impact of two methods. Again, solid lines are

from QR, and dashed lines from LS. We have carried out similar analysis on Swedish and U.K.

mortality data. Additional results are provided in Appendix B. There are some interesting

features to note.

• Male forecasts are poorer in general than female’s for the data we have examined in this

study. This is obvious if we compare figures 8 and 9, and then figures 10 and 11 for each

criterion we have computed.

• While there is no clear advantage of using a shorter base period for the females, it seems

obvious that a shorter base period prediction generates better results for the males (see

black lines for the 30-year based results v.s. red lines for the 40-year based results).

We think all of the differences are rooted in the possible structural change in male mortality

improvement. See Figure 12 for the fitted Lee-Carter model components over the examined

history period for female and male. Comparing the time-varying index kt for female and male,

we find that female kt shows a rather consistently linear declining pattern, but the kt pattern for

the male is curved, implying trend changes. When structural changes are present, a shorter base
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period can follow the underlying pattern faster, therefore giving better forecast performance.

The phenomenon of “shorter base period, better prediction performance” is actually evidence

for structural change, in our opinion.

Furthermore, the presence of structural changes implies the failure of the Lee-Carter model.

If structural changes happen, the Lee-Carter model is not able to provide adequate prediction

any more. QR, as a robust method to LS under the framework of the Lee-Carter model,

doesn’t apply either. In other words, QR can not remedy the abnormal situation due to

structural changes. As a result, we don’t see any significant improvement from QR in the real

data analysis of male mortality prediction.

This should be interpreted differently for Canadian female mortality data, where the im-

provement from QR prediction is also very limited. The reason for female mortality is probably

that there is no (or little) structural change in the time-varying index kt, nor irregular large

shocks in kt’s fluctuation during the studied period. Therefore, the improvement from QR is

very minor, similar to Case 1 in the simulation study. We have similar observations for Swedish

and U.K. mortality prediction—both male and female.

For Swedish female and male mortality prediction (see figures 26 and 27), it is interesting

to note that the confidence intervals from QR are much narrower than those from LS, while the

Kolmogorov-Smirnov test and coverage from QR still perform similarly to those from LS. We

think this difference is due to the effect of the 1918 Spanish flu pandemic in Swedish mortality

data, and QR presents robustness in dealing with large shocks.

We also compare forecast performance between the simulation study and the real data

analysis. Table 1 puts together the various forecast assessment criteria for forecasts e0(t) at 20-

and 40-year horizons. In the simulation, we use Canadian female and male mortality patterns

from 1921 to 2006 as seeds to generate different scenarios (Case 1 with the LS method used).

Therefore, the results reflect the overall average for each criterion. The real data results are

based on the rolling procedure of a 40-year base period. We see that the errors resulting from

female forecasts are at similar magnitudes (except that bias becomes 10 times of the simulated

one at 40-year horizon). However, the errors in male forecasts are at a magnitude that is from

triple to nine times of their counterparts from the simulation, and coverage drops to 11.11

percent at 20-year horizon, and 0 percent at 40-year horizon with real data. This seems to
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Figure 8: Real data analysis on Canadian female mortality data from 1921 to 2006 based on

LS and QR using 30- or 40-year base period. Rolling window procedure is applied and the

first jump-off year is 1960. Presented are forecast criteria: RMSE, MAPE, bias, Kolmogorov-

Smirnov statistic, coverage and average confidence interval width for e0(t).
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Figure 9: Real data analysis on Canadian male mortality data from 1921 to 2006 based on

LS and QR using 30- or 40-year base period. Rolling window procedure is applied and the

first jump-off year is 1960. Presented are forecast criteria: RMSE, MAPE, bias, Kolmogorov-

Smirnov statistic, coverage and average confidence interval width for e0(t).
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Figure 10: Real data analysis on Canadian female mortality data from 1921 to 2006. Rolling

window procedure is applied, the base period is 30 years and the first jump off year is 1960.

Presented is the percentile histograms from LS and QR

suggest that the documented underprediction in the Lee-Carter model application is the result

of model mis-specification.

Due to moving base and uneven size by forecast horizon, statistical evaluation of prediction

performance should be interpreted with caution. This is particularly true for long-horizon

predictions because as few as six samples are used to compute SMSE, bias, etc.

6 Conclusion

In this paper, we set up a backtesting framework to assess long-term prediction performance of

the Lee-Carter model. We emphasize the importance of examining two aspects—the accuracy of

point forecasts and the adequacy of distribution forecasts equally. Various forecast performance

criteria are used. In addition to the commonly used error measurements RMSE, MAPE, bias

and so on, we also carry out the goodness-of-fit test based on Kolmogorov-Smirnov statistic.
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Figure 11: Real data analysis on Canadian male mortality data from 1921 to 2006. Rolling

window procedure is applied, the base period is 30 years and the first jump-off year is 1960.

Presented is the percentile histograms from LS and QR

This is to check if the realized outcomes agree with the predicted distribution.

The time-varying index kt is critical for Lee-Carter model prediction. In the evolution of

human mortality, large variations occur once in a while. To improve the robustness of the model

parameter estimation under different conditions, we propose to use quantile regression to the

model of kt. We have shown that QR improves prediction performance when data contain

irregular shocks through simulation study in Section 4.3. Even though QR may not perform

as well as we expected for real data, we believe QR is a safe-guard method against any hidden

abnormal situations in real data. LS and QR should complement each other—the two methods

should be used together and any large discrepancy between the results of applying these two

methods should be investigated further.

We closely examine the issue of taking into account drift uncertainty in deriving the forecast

distribution. Using our designed simulation study, it is shown that the drift term in kt plays

a very important role in generating plausible prediction intervals, particularly when we are
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Figure 12: The fitted Lee-Carter model estimates based on Canadian female and male mortality

data from 1921 to 2006.

interested in long-term predictions. Our proposed bootstrap procedure is able to capture the

uncertainty in the drift term, distribution-free. Our results reveal ignoring drift uncertainty in

32



Table 1: Forecast criteria at 20- and 40-year horizons in simulation and real data analysis

20-year horizon comparison

Can. female (sim) Canadian female Can. male (sim) Canadian male

RMSE 1.166 0.8365 0.9885 2.569

MAPE 0.0117 0.0096 0.0104 0.0326

Bias −0.0605 −0.0325 −0.0399 −2.4539

KS.test 0.71 0.9888 1.03 4.5857

Coverage 94.42% 100% 93.93% 11.11%

40-year horizon comparison

RMSE 1.4826 1.1307 1.2685 4.6083

MAPE 0.0142 0.0136 0.0129 0.0593

Bias −0.1022 −1.1173 −0.0586 −4.5919

KS.test 0.8 2.0674 0.91 2.6458

Coverage 94.57% 100% 94.11% 0%

prediction may lead to severe underestimation to the future uncertainty in mortality.

Another innovation of this study is to make use of specially designed simulation schemes to

test the proposed methodologies. Our simulation study allowed us to separate the model effec-

tiveness issue from the model identification issue. We have shown that the forecast performance

of the Lee-Carter model can be improved significantly with the QR method, particularly for

the distribution prediction. In addition, the simulation reveals that there are systematic biases

in predicting life expectancies using the Lee-Carter model. This bias need to be addressed in

order to have correct predictions. The causes of the bias will be explored in future work.

Finally, with real data analysis, female and male mortality data normally exhibit very

different predictability. This is true for all the data sets we have examined: from Sweden, the

United Kingdom and Canada. Compared to what we have seen in the simulated data, there

are potential trends or structural changes in male mortality. This could certainly be a reason

projections from a shorter base period outperform those with longer base periods. This also

means that, in reality, a simple Lee-Carter model covering the whole range of observation may
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mis-specify the process that drives mortality dynamics. The results with real data analysis

raise caution to users of the Lee-Carter model. In practice, users tend to use the data with a

period as short as 10 years to calibrate the Lee-Carter model; the long-term prediction based

on this method could be questionable.
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A Kolmogorov-Smirnov test

In this section, we derive the asymptotic distribution of ks.statistic used in (8). First we

assume that X1, . . . , Xn are n variables at a certain time of future. Each Xk follows a continuous

distribution function Fk(x) which is unknown to us. But we can simulate m iid random variables

Xk1, . . . , Xkm that follow the same distribution as Xk. Define the empirical distribution function

of {Xk1, . . . , Xkm} as

Fk,m(x) =
1

m

m∑
i=1

I(Xki ≤ x).

We can then use Fk,m(x) to define the sample percentile of Xk given {Xk1, . . . , Xkm} as

pk = Fk,m(Xk). Notice that 0 ≤ pk ≤ 1 and
∑m

i=1 I(Xki ≤ x) follows binomial distribution

Bin(m,Fk(x)) for each fixed x. Thus the distribution function of pk is

Uk,m(s) = P{pk ≤ s}
= E[E[I(Fk(Xk) ≤ s)|Xk]]

= E[E[I
( m∑

i=1

I(Xki ≤ Xk) ≤ ms
)
|Xk]]

= E

[ms]∑
i=0


m

i


 F i

k(Xk)(1− Fk(Xk))
m−i

=

[ms]∑
i=0


m

i


 Beta(i + 1,m− i + 1)

=
[ms] + 1

m + 1
, 0 ≤ s ≤ 1,

where we use the fact that Fk(Xk) follows uniform[0,1] distribution so the expectation links to

Beta function. One obvious conclusion is that Uk,m(s) is independent of Fk(x). In addition, it
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is easy to check

sup
0≤s≤1

|Uk,m(s)− s| ≤ 1/(m + 1). (A.1)

So

lim
m→∞

sup
0≤s≤1

|Uk,m(s)− s| = 0. (A.2)

This leads to the result in the following Proposition.

Proposition A.1 pk follows uniform[0,1] distribution asymptotically.

Since Xk1, . . . , Xkm are simulated from the specific model and m can be as large as possible,

we assume that m is a function of n with constrain m ≥ n.

Define the empirical distribution function based on pk, k = 1, . . . , n as

F̂n(s) =
1

n

n∑

k=1

I(pk ≤ s), 0 ≤ s ≤ 1

and corresponding empirical process as

Bn(s) =
√

n(F̂n(s)− s), 0 ≤ s ≤ 1.

Definition A.2 A process {B(s), 0 ≤ s ≤ 1} is called a Brownian bridge if it is a mean zero

Gaussian process with covariance EB(s)B(t) = min{s, t} − st, 0 ≤ s, t ≤ 1.

The following result involves convergence of distribution in infinite dimensional space. Many

technique terminologies such as Brownian bridge and Skorokhod topology can be found in

Billingsley (1999).

Proposition A.3 Assume that {X1, . . . , Xn} are independent of each other for k = 1, 2, . . . , n.

Then, as n → ∞, {Bn(s), 0 ≤ s ≤ 1} converges weakly in the Skorokhod space D[0, 1] to

{B(s), 0 ≤ s ≤ 1}.

Proof: Define

Wn(s) =
n∑

k=1

n−1/2
(
I(pk ≤ s)− Uk,m(s)

)
, 0 ≤ s ≤ 1.

Then Bn(s) can be expressed by two parts:

Bn(s) = Wn(s) +
n∑

k=1

n−1/2(Uk,m(s)− s), 0 ≤ s ≤ 1.
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Since by (A.1)

sup
0≤s≤1

∣∣∣∣∣
n∑

k=1

n−1/2(Uk,m(s)− s)

∣∣∣∣∣ ≤
√

n/(m + 1) → 0 as n →∞ (and m →∞).

We just need to prove that {Wn(s)} converges to {B(s)} which follows by Theorem 2.2.1 in

Koul (2002). This completes the proof of Proposition.

By using continuous mapping theorem (cf. Bilingsley (1999)), we obtain the asymptotic

distribution of ks.statistic.

Corollary A.4 We have

sup
0≤s≤1

|Bn(s)| D−→ sup
0≤s≤1

|B(s)|.

When X1, . . . , Xn are not independent, the above result is no longer true. Given a set

of suitable conditions such as stationarity of X1, . . . , Xn, Bn(s) still converges to a Gaussian

process but no longer to be a Brownian bridge.

B Additional results

We have implemented the evaluation procedures described in Sections 4 and 5 to data sets

from different countries—Sweden, the United Kingdom, and Canada—and both genders. The

overall observations are similar, with a few exceptions. Additional results not been given in the

main text are attached here.
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Figure 13: Simulation study over the effect of drift uncertainty on forecast performance. The

seed is obtained from Swedish male mortality data from 1907 to 2006. Forecast errors of RMSE,

MAPE, and bias for e0(t) for 60-year horizons are presented for both Case 1 (left column panel)

and Case 2 (right column panel).
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Figure 14: Simulation study over the effect of drift uncertainty on forecast performance. The

seed is obtained from Swedish male mortality data from 1907 to 2006. Density forecast for

e0(t) for 60-year horizons are assessed by Kolmogorov-Smirnov statistics, coverage and average

confidence interval width for both Case 1 (left column panel) and Case 2 (right column panel).

The critical value 1.36 from Kolmogorov-Smirnov test and the nominal coverage 95 percent are

also marked.
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Figure 15: Simulation study over the effect of drift uncertainty on forecast performance. The

seed is obtained from Swedish male mortality data from 1907 to 2006. Percentile histograms

for forecasts e0(t) for five-, 10-, 20-, 40- and 60-year horizons are presented for Case 1 (DC),

Case 2 (DC), Case 1 (DU) and Case 2 (DU), respectively.
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Figure 16: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Swedish male mortality data from 1907 to 2006. Forecast errors of RMSE, MAPE, and

bias for e0(t) for 45-year horizons are presented for both Case 1 (left column panel) and Case

2 (right column panel).
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Figure 17: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Swedish male mortality data from 1907 to 2006. Kolmogorov-Smirnov statistic, coverage

and average confidence interval width for e0(t) for 45-year horizons are presented for both

Case 1 (left column panel) and Case 2 (right column panel). The critical value 1.36 from

Kolmogorov-Smirnov test and the nominal coverage 95 percent are also marked.
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Figure 18: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Canadian female mortality data from 1921 to 2006. Forecast errors of RMSE, MAPE,

and bias for e0(t) for 45-year horizons are presented for both Case 1 (left column panel) and

Case 2 (right column panel).
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Figure 19: Simulation study on forecast performance based on LS and QR. The seed is ob-

tained from Canadian female mortality data from 1921 to 2006. Kolmogorov-Smirnov statistic,

coverage and average confidence interval width for e0(t) for 45-year horizons are presented for

both Case 1 (left column panel) and Case 2 (right column panel). The critical value 1.36 from

Kolmogorov-Smirnov test and the nominal coverage 95 percent are also marked.
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Figure 20: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Canadian male mortality data from 1921 to 2006. Forecast errors of RMSE, MAPE, and

bias for e0(t) for 45-year horizons are presented for both Case 1 (left column panel) and Case

2 (right column panel).
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Figure 21: Simulation study on forecast performance based on LS and QR. The seed is obtained

from Canadian male mortality data from 1921 to 2006. Kolmogorov-Smirnov statistic, coverage

and average confidence interval width for e0(t) for 45-year horizons are presented for both Case

1 (left column panel) and Case 2 (right column panel). The critical value 1.36 from Kolmogorov-

Smirnov test and the nominal coverage 95 percent are also marked.
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Figure 22: Simulation study on forecast performance based on LS and QR. The seed is obtained

from U.K. female mortality data from 1922 to 2006. Forecast errors of RMSE, MAPE, and

bias for e0(t) for 45-year horizons are presented for both Case 1 (left column panel) and Case

2 (right column panel).
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Figure 23: Simulation study on forecast performance based on LS and QR. The seed is obtained

from U.K. female mortality data from 1922 to 2006. Kolmogorov-Smirnov statistic, coverage

and average confidence interval width for e0(t) for 45-year horizons are presented for both

Case 1 (left column panel) and Case 2 (right column panel). The critical value 1.36 from

Kolmogorov-Smirnov test and the nominal coverage 95 percent are also marked.
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Figure 24: Simulation study on forecast performance based on LS and QR. The seed is obtained

from U.K. male mortality data from 1922 to 2006. Forecast errors of RMSE, MAPE, and bias

for e0(t) for 45-year horizons are presented for both Case 1 (left column panel) and Case 2

(right column panel).

50



0 10 20 30 40

0
1

2
3

4
5

20 and 40 base years(Case 1)

K
S

 S
ta

tis
tic

s

LS (40 year)
QR(40 year)
LS(20 year)
QR(20 year)

0 10 20 30 40

0
1

2
3

4
5

20 and 40 base years (Case 2)

K
S

 S
ta

tis
tic

s

LS (40 year)
QR(40 year)
LS(20 year)
QR(20 year)

0 10 20 30 40

80
85

90
95

10
0

20 and 40 base years(Case 1)

P
re

di
ct

io
n 

C
ov

er
ag

e

LS (40 year)
QR(40 year)
LS(20 year)
QR(20 year)

0 10 20 30 40

80
85

90
95

10
0

20 and 40 base years (Case 2)

P
re

di
ct

io
n 

C
ov

er
ag

e

LS (40 year)
QR(40 year)
LS(20 year)
QR(20 year)

0 10 20 30 40

2
4

6
8

10
12

14
16

20 and 40 base years(Case 1)

A
ve

ra
ge

 C
on

fid
en

ce
 In

te
rv

al
 W

id
th

LS (40 year)
QR(40 year)
LS(20 year)
QR(20 year)

0 10 20 30 40

2
4

6
8

10
12

20 and 40 base years (Case 2)

A
ve

ra
ge

 C
on

fid
en

ce
 In

te
rv

al
 W

id
th

LS (40 year)
QR(40 year)
LS(20 year)
QR(20 year)

Figure 25: Simulation study on forecast performance based on LS and QR. The seed is obtained

from U.K. male mortality data from 1922 to 2006. Kolmogorov-Smirnov statistic, coverage and

average confidence interval width for e0(t) for 45-year horizons are presented for both Case 1

(left column panel) and Case 2 (right column panel). The critical value 1.36 from Kolmogorov-

Smirnov test and the nominal coverage 95 percent are also marked.
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Figure 26: Real data analysis on Swedish female mortality data from 1921 to 2006 based on

LS and QR using 30- or 40-year base period. Rolling window procedure is applied and the

first jump off year is 1960. Presented are forecast criteria: RMSE, MAPE, bias, Kolmogorov-

Smirnov statistic, coverage and average confidence interval width for e0(t).
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Figure 27: Real data analysis on Swedish male mortality data from 1907 to 2006 based on

LS and QR using 30- or 40-year base period. Rolling window procedure is applied and the

first jump off year is 1960. Presented are forecast criteria: RMSE, MAPE, bias, Kolmogorov-

Smirnov statistic, coverage and average confidence interval width for e0(t).
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Figure 28: Real data analysis on Swedish female mortality data from 1907 to 2006. Rolling

window procedure is applied, the base period is 30-year and the first jump off year is 1960.

Presented is the percentile histograms from LS and QR
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Figure 29: Real data analysis on Swedish male mortality data from 1907 to 2006. Rolling

window procedure is applied, the base period is 30-year and the first jump off year is 1960.

Presented is the percentile histograms from LS and QR
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Figure 30: The fitted LC model estimates based on Swedish female and male mortality data

from 1907 to 2006.
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Figure 31: Real data analysis on U.K. female mortality data from 1921 to 2006 based on LS and

QR using 30- or 40-year base period. Rolling window procedure is applied and the first jump

off year is 1960. Presented are forecast criteria: RMSE, MAPE, bias, Kolmogorov-Smirnov

statistic, coverage and average confidence interval width for e0(t).
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Figure 32: Real data analysis on U.K. male mortality data from 1921 to 2006 based on LS and

QR using 30- or 40-year base period. Rolling window procedure is applied and the first jump

off year is 1960. Presented are forecast criteria: RMSE, MAPE, bias, Kolmogorov-Smirnov

statistic, coverage and average confidence interval width for e0(t).
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Figure 33: Real data analysis on U.K. female mortality data from 1921 to 2006. Rolling window

procedure is applied, the base period is 30-year and the first jump off year is 1960. Presented

is the percentile histograms from LS and QR
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Figure 34: Real data analysis on U.K. male mortality data from 1921 to 2006. Rolling window

procedure is applied, the base period is 30-year and the first jump off year is 1960. Presented

is the percentile histograms from LS and QR
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Figure 35: The fitted LC model estimates based on U.K. female and male mortality data from

1922 to 2006.
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