
Multivariate Operational Risk:

Dependence Modelling with Lévy Copulas
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Abstract

Simultaneous modelling of operational risks occurring in different event type/business

line cells poses the challenge for operational risk quantification. Invoking the new

concept of Lévy copulas for dependence modelling yields simple approximations of

high quality for multivariate operational VAR.

1 Introduction

A required feature of any advanced measurement approach (AMA) of Basel II for measur-

ing operational risk is that it allows for explicit correlations between different operational

risk events. The core problem here is multivariate modelling encompassing all different

event type/business line cells, and thus the question how their dependence structure af-

fects a bank’s total operational risk. The prototypical loss distribution approach (LDA)

assumes that, for each cell i = 1, . . . , d, the cumulated operational loss Si(t) up to time t

is described by an aggregate loss process

Si(t) =

Ni(t)∑

k=1

X i
k , t ≥ 0 , (1.1)

where for each i the sequence (X i
k)k∈N are independent and identically distributed (iid)

positive random variables with distribution function Fi describing the magnitude of each

loss event (loss severity), and (Ni(t))t≥0 counts the number of losses in the time interval
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[0, t] (called frequency), independent of (X i
k)k∈N. The bank’s total operational risk is then

given as

S+(t) := S1(t) + S2(t) + · · · + Sd(t) , t ≥ 0 . (1.2)

The present literature suggests to model dependence between different operational risk

cells by means of different concepts, which basically split into models for frequency de-

pendence on the one hand and for severity dependence on the other hand.

Here we suggest a model based on the new concept of Lévy copulas (see e.g. Cont

& Tankov (2004)), which models dependence in frequency and severity simultaneously,

yielding a model with comparably few parameters. Moreover, our model has the same

advantage as a distributional copula: the dependence structure between different cells can

be separated from the marginal processes Si for i = 1, . . . , d. This approach allows for

closed-form approximations for operational VAR (OpVAR).

2 Dependent Operational Risks and Lévy Copulas

In accordance with a recent survey of the Basel Committee on Banking Supervision about

AMA practices at financial services firms, we assume that the loss frequency processes Ni

in (1.1) follows a homogeneous Poisson process with rate λi > 0. Then the aggregate loss

(1.1) constitutes a compound Poisson process and is therefore a Lévy process (actually,

the compound Poisson process is the only Lévy process with piecewise constant sample

paths).

A key element in the theory of Lévy processes is the notion of the so-called Lévy

measure. A Lévy measure controls the jump behaviour of a Lévy process and, therefore,

has an intuitive interpretation, in particular in the context of operational risk. The Lévy

measure of a single operational risk cell measures the expected number of losses per unit

time with a loss amount in a prespecified interval. For our compound Poisson model,

the Lévy measure Πi of the cell process Si is completely determined by the frequency

parameter λi > 0 and the distribution function Fi of the cell’s severity: Πi([0, x)) :=

λiP (X i ≤ x) = λiFi(x) for x ∈ [0,∞). The corresponding one-dimensional tail integral is

defined as

Πi(x) := Πi([x,∞)) = λiP (X i > x) = λiF i(x) . (2.1)

Our goal is modelling multivariate operational risk. Hence, the question is how dif-

ferent one-dimensional compound Poisson processes Si(·) =
∑Ni(·)

k=1 X i
k can be used to

construct a d-dimensional compound Poisson process S = (S1, S2, . . . , Sd) with in general

dependent components. It is worthwhile to recall the similar situation in the case of the
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more restrictive setting of static random variables. It is well-known that the dependence

structure of a random vector can be disentangled from its marginals by introducing a

distributional copula. Similarly, a multivariate tail integral

Π(x1, . . . , xd) = Π([x1,∞) × · · · × [xd,∞)) , x ∈ [0,∞]d , (2.2)

can be constructed from the marginal tail integrals (2.1) by means of a Lévy copula. This

representation is the content of Sklar’s theorem for Lévy processes with positive jumps,

which basically says that every multivariate tail integral Π can be decomposed into its

marginal tail integrals and a Lévy copula Ĉ according to

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd)) , x ∈ [0,∞]d . (2.3)

For a precise formulation of this Theorem we refer to Cont & Tankov (2004), Theorem 5.6.

Now we can define the following prototypical LDA model.

Definition 2.1. [Multivariate Compound Poisson model]

(1) All aggregate loss processes Si for i = 1, . . . , d are compound Poisson processes with

tail integral Πi(·) = λiFi(·).

(2) The dependence between different cells is modelled by a Lévy copula Ĉ : [0,∞)d →

[0,∞), i.e., the tail integral of the d-dimensional compound Poisson process S = (S1, . . . , Sd)

is defined by

Π(x1, . . . , xd) = Ĉ(Π1(x1), . . . , Πd(xd)).

3 The Bivariate Clayton Model

A bivariate model is particularly useful to illustrate how dependence modelling via Lévy

copulas works. Therefore, we now focus on two operational risk cells as in Definition 2.1(1).

The dependence structure is modelled by a Clayton Lévy copula, which is similar to the

well-known Clayton copula for distribution functions and parameterized by ϑ > 0 (see

Cont & Tankov (2004), Example 5.5):

Ĉϑ(u, v) = (u−ϑ + v−ϑ)−1/ϑ , u, v ≥ 0 .

This copula covers the whole range of positive dependence. For ϑ → 0 we obtain in-

dependence and then, as we will see below, losses in different cells never occur at the

same time. For ϑ → ∞ we get the complete positive dependence Lévy copula given

by Ĉ‖(u, v) = min(u, v). We decompose now the two cells’ aggregate loss processes into
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different components (where the time parameter t is dropped for simplicity):

S1 = S⊥1 + S‖1 =

N⊥1∑

k=1

X1
⊥k +

N‖∑

l=1

X1
‖l ,

S2 = S⊥2 + S‖2 =

N⊥2∑

m=1

X2
⊥m +

N‖∑

l=1

X2
‖l ,

(3.1)

where S‖1 and S‖2 describe the aggregate losses of cell 1 and 2 that is generated by

“common shocks”, and S⊥1 and S⊥2 describe aggregate losses of one cell only. Note that

apart from S‖1 and S‖2, all compound Poisson processes on the right-hand side of (3.1)

are mutually independent. The frequency of simultaneous losses is given by

Ĉϑ(λ1, λ2) = lim
x↓0

Π‖2(x) = lim
x↓0

Π‖1(x) = (λ−θ
1 + λ−θ

2 )−1/θ =: λ‖ ,

which shows that the number of simultaneous loss events is controlled by the Lévy copula.

Obviously, 0 ≤ λ‖ ≤ min(λ1, λ2),where the left and right bounds refer to ϑ → 0 and

ϑ → ∞, respectively. Consequently, in the case of independence, losses never happen at

the same instant of time.

Also the severity distributions of X1
‖ and X2

‖ as well as their dependence structure are

determined by the Lévy copula. To see this, define the joint survival function as

F ‖(x1, x2) := P (X1
‖ > x1, X

2
‖ > x2) =

1

λ‖
Ĉϑ(Π1(x1), Π2(x2)) (3.2)

with marginals

F ‖1(x1) = lim
x2↓0

F ‖(x1, x2) =
1

λ‖
Ĉϑ(Π1(x1), λ2) (3.3)

F ‖2(x2) = lim
x1↓0

F ‖(x1, x2) =
1

λ‖
Ĉϑ(λ1, Π2(x2)) . (3.4)

In particular, it follows that F‖1 and F‖2 are different from F1 and F2, respectively. To

explicitly extract the dependence structure between the severities of simultaneous losses

X1
‖ and X2

‖ we use the concept of a distributional survival copula. Using (3.2)–(3.4) we

see that the survival copula Sϑ for the tail severity distributions F ‖1(·) and F ‖2(·) is the

well-known distributional Clayton copula; i.e.

Sϑ(u, v) = (u−ϑ + v−ϑ − 1)−1/ϑ, 0 ≤ u, v ≤ 1 .

For the tail integrals of the independent loss processes S⊥1 and S⊥2. we obtain for x1, x2 ≥

0

Π⊥1(x1) = Π1(x1) − Π‖1(x1) = Π1(x1) − Ĉϑ(Π1(x1), λ2) ,

Π⊥2(x2) = Π2(x2) − Π‖2(x2) = Π2(x2) − Ĉϑ(λ1, Π2(x2)) ,

so that λ⊥1 = λ1 − λ‖ , λ⊥2 = λ2 − λ‖.
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Figure 4.1. Decomposition of the domain of the tail integral Π
+
(z) for z = 6 into a

simultaneous loss part Π
+

‖ (z) (orange area) and independent parts Π⊥1(z) (solid black

line) and Π⊥2(z) (dashed black line).

4 Analytical Approximations for Operational VAR

In this section we turn to the quantification of total operational loss encompassing all

operational risk cells and, therefore, we focus on the total aggregate loss process S+

defined in (1.2). Our goal is to provide some general insight to multivariate operational

risk and to find out, how different dependence structures (modelled by Lévy copulas)

affect OpVAR, which is the standard metric in operational risk measurement. The tail

integral associated with S+ is given by

Π
+
(z) = Π({(x1, . . . , xd) ∈ [0,∞)d :

d∑

i=1

xi ≥ z}) , z ≥ 0 . (4.1)

For d = 2 we can write

Π
+
(z) = Π⊥1(z) + Π⊥2(z) + Π

+

‖ (z) , z ≥ 0 , (4.2)

where Π⊥1(·) and Π⊥2(·) are the independent jump parts and

Π
+

‖ (z) = Π({(x1, x2) ∈ (0,∞)2 : x1 + x2 ≥ z}) , z ≥ 0 ,

describes the dependent part due to simultaneous loss events; the situation is depicted in

Figure 4.1.

Since for every compound Poisson process with intensity λ > 0 and positive jumps

with distribution function F , the tail integral is given by Π(·) = λF (·), it follows from
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(4.2) that the total aggregate loss process S+ is again compound Poisson with frequency

parameter and severity distribution

λ+ = lim
z↓0

Π
+
(z) and F+(z) = 1 − F

+
(z) = 1 −

Π
+
(z)

λ+
, z ≥ 0 . (4.3)

This result proves now useful to determine a bank’s total operational risk consisting of

several cells. Before doing that, recall the definition of OpVAR for a single operational

risk cell (henceforth called stand-alone OpVAR.) For each cell, stand-alone OpVAR at

confidence level κ ∈ (0, 1) and time horizon t is the κ-quantile of the aggregate loss

distribution, i.e. VARt(κ) = G←t (κ) with G←t (κ) = inf{x ∈ R : P (S(t) ≤ x) ≥ κ}.

In Böcker & Klüppelberg (2005, 2006, 2007) it was shown that OpVAR at high con-

fidence level can be approximated by a closed-form expression, if the loss severity is

subexponential, i.e. heavy-tailed. As this is common believe we consider in the sequel this

approximation, which can be written as

VARt(κ) ∼ F←
(

1 −
1 − κ

EN(t)

)
, κ ↑ 1 , (4.4)

where the symbol “∼” means that the ratio of left and right hand side converges to

1. Moreover, EN(t) is the cell’s expected number of losses in the time interval [0, t].

Important examples for subexponential distributions are lognormal, Weibull, and Pareto.

Here, we extend the idea of an asymptotic OpVAR approximation to the multivariate

problem. In doing so, we exploit the fact that S+ is a compound Poisson process with

parameters as in (4.3). In particular, if F+ is subexponential, we can apply (4.4) to

estimate total OpVAR. Consequently, if we are able to specify the asymptotic behaviour

of F
+
(x) as x → ∞ we have automatically an approximation of VARt(κ) as κ ↑ 1.

To make more precise statements about OpVAR, we focus our analysis on Pareto

distributed severities with distribution function

F (x) =
(
1 +

x

θ

)−α

, x > 0 ,

with shape parameters θ > 0 and tail parameter α > 0. Pareto’s law is the prototypical

parametric example for a heavy-tailed distribution and suitable for operational risk mod-

elling. As a simple consequence of (4.4), in the case of a compound Poisson model with

Pareto severities (Pareto-Poisson model) the analytic OpVAR is given by

VARt(κ) ∼ θ

[(
λ t

1 − κ

)1/α

− 1

]
∼ θ

(
λ t

1 − κ

)1/α

, κ ↑ 1 . (4.5)

To demonstrate the kind of results we obtain by such approximation methods we

consider a Pareto-Poisson model, where the severity distributions Fi of the first (say)
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b ≤ d cells are tail equivalent with tail parameter α > 0 and dominant to all other cells,

i.e.

lim
x→∞

F i(x)

F 1(x)
=

(
θi

θ1

)α

, i = 1, . . . , b , lim
x→∞

F i(x)

F 1(x)
= 0 , i = b + 1, . . . , d . (4.6)

In the important cases of complete positive dependence and independence, closed-form

results can be found and may serve as extreme cases concerning the dependence structure

of the model.

Theorem 4.2. Consider a compound Poisson model with cell processes S1, . . . , Sd with

Pareto distributed severities satisfying (4.6). Let VARi
t(·) be the stand-alone OpVAR of

cell i.

(1) If all cells are completely dependent with the same frequency λ for all cells, then S+

is compound Poisson with parameters

λ+ = λ and F
+
(z) ∼

(
b∑

i=1

θi

)α

z−α , z → ∞ ,

and total OpVAR is asymptotically given by

VAR+
‖t(κ) ∼

b∑

i=1

VARi
t(κ), κ ↑ 1 . (4.7)

(2) If all cells are independent, then S+ is compound Poisson with parameters

λ+ = λ1 + · · ·+ λd and F
+
(z) ∼

1

λ+

b∑

i=1

(
θi

z

)α

λi , z → ∞ , (4.8)

and total OpVAR is asymptotically given by

VAR+
⊥t(κ) ∼

[
b∑

i=1

(
VARi

t(κ)
)α
]1/α

, κ ↑ 1 . (4.9)

On the one hand, Theorem 4.2 states that for the completely dependent Pareto-Poisson

model, total asymptotic OpVAR is simply the sum of the dominating cell’s asymptotic

stand-alone OpVARs. Recall that this is similar to the new proposals of Basel II, where

the standard procedure for calculating capital charges for operational risk is just the

simple-sum VAR. To put it another way, regulators implicitly assume complete depen-

dence between different cells, meaning that losses within different business lines or risk

categories always happen at the same instants of time.

Very often, the simple-sum OpVAR (4.7) is considered to be the worst case scenario

and, hence, as an upper bound for total OpVAR in general, which in the heavy-tailed case
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can be grossly misleading. To see this, assume the same frequency λ in all cells also for

the independent model, and denote by VAR+
‖ (κ) and VAR+

⊥(κ) completely dependent and

independent total OpVAR, respectively. In this case we obtain from (4.9) in the situation

(4.6) from Theorem 4.2(2)

VAR+
⊥(κ) ∼

(
λ t

1 − κ

)1/α
(

b∑

i=1

θα
i

)1/α

, κ ↑ 1 ,

whereas VAR+
‖ (κ) is given by (4.7). Then, as a consequence of convexity (α > 1) and

concavity (α < 1) of the function x 7→ xα,

VAR+
⊥(κ)

VAR+
‖ (κ)

=

(∑b
i=1 θα

i

)1/α

∑b
i=1 θi






< 1 , α > 1

= 1 , α = 1

> 1 , α < 1 .

(4.10)

This result says that for heavy-tailed severity data with F i(xi) ∼ (xi/θi)
−α as xi → ∞,

subadditivity of OpVAR is violated because the sum of stand-alone OpVARs is smaller

than independent total OpVAR.
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