

Article from:

ARCH 2013.1 Proceedings

August 1-4, 2012

Louis Adam

Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

Louis Adam, FSA, FCIA Université Laval, Quebec City, QC 47th Actuarial Research Conference Winnipeg, Manitoba, 2012-08-03

Outline

- 1. Introduction
- 2. Phases of Study
- 3. Methodology & Results, Phase II
- 4. Mortality Improvement Rate: Formulas
- 5. Projection Scales: Proposal
- 6. Conclusion

ARC, Winnipeg. Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

1. Introduction

Acknowledgements:

- Financial support from Canadian Institute of Actuaries, and formerly from Chaire d'actuariat, Université Laval and SOA
- Data and support:
 - Office of the Chief Actuary (CPP)
 - Régie des rentes du Québec (QPP)
- CIA CCPME: Committee on Canadian Pensioners Mortality Experience
- and many reviewers, colleagues, students

 $ARC, Winnipeg.\ Mortality\ Improvement\ for\ Canadian\ Pensioners:\ Proposed\ Projection\ Scales$

CCPME

- Created in 2008 by CIA
- Commissioned two studies in 2009
- Data collected in 2010
- Data analysis and review 2010 and 2011
- Reports drafted and reviewed:
 - Registered Pension Plan Study in 2012
 - CPM Study in 2011 and 2012
- CIA Annual Meeting: June 2012 Presentation

CPM

- Canadian Pensioners Mortality = CPM
- Pensioner data only, from CPP and QPP administrators
 - Separate and combined results
 - Data comprehensive and high quality
 - Data segmented by pension income level
 - Almost 8 million exposed lives (86.9 M life-years exposure from 1967 to 2008)
 - pensions payable since 1967

ARC, Winnipeg. Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

Messages, CIA June 2012 Session

- It is time to change the Canadian standard for mortality tables for pension plans: Canadian evidence for this
- 2. **Income is important** for pensioner mortality (with time, gender, age, source)
- 3. Mortality trend: **Higher improvements rates** observed in recent past= **troubling news**
- 4. Impact might be material for many plans

ARC, Winnipeg. Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

2. CPM Study Phases

- 1: Get high quality data: CPP + QPP = CAN
- 2: Measure qx at recent point in time:
 - 2005-2007, centered in 2006
 - Phase II Report: May 31st, 2012
- 3: Measure mortality trends: projection scales
 - With recent experience over 15 years for short term scale: 1992-2007
 2006 to 2021
 - Long term scale based on C/QPP Actuarial Reports
 - Phase III Report: Draft July 17th, 2012

ARC, Winnipeg. Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

3. Methodology & Results, Phase II

- Deaths & Exposure measured
- 5 variables: source, gender, age, income, year
- Exact age, constant force of mortality for fractional ages
- Exact age compares to "Nearest Birthday"
- Provides point estimate and confidence intervals
- Graduation: Gompertz, modified at extreme ages, values within bounds of 1 std dev.

Louis Adam, FSA, FCIA, Université Laval

Income

- 5 income classes
- Split in % of C/QPP Maximum Pension
 1: <35%, 2: 35%-94%, 3: >95%
- Remove lower pensions (Class 1) to get proxy for mortality of pension plans members
- Class 4 = Class 2 (mid) + Class 3 (high)
- Class 5 = All income

ARC, Winnipeg. Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

Results shown here

- Ratios of q(x): CPM-CAN/ UP-94 @ 2006 +
- 2006: No projection for CPM-CAN
- 2012: 6-Year Projection with short term scale
- UP-94: Scale AA, static proj. to 2006 or 2012

CPM vs UP-94: 2006 and beyond

- Male: depends on income class, but lower than UP-94 in 2012 until age 84
 - Class 4 ages 74-77: under 102%;
 - Wide gap between income classes,
- For Female: CPM mortality is lower (age<87)
- Projected to 2015, 2020: lower ratios
- Next Charts: compare Classes 2, 3 & 4 only
- Also: compare Sources CPP, QPP, CAN

4. Mortality Improvement Rate, Formulas

Next Slide show formulas for reference

Charts follow and illustrate trends

Excerpts from Phase III Draft Report (2012-07)

RC Winnings Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

Formulas: force, prob., weights

Deaths and exposure (exact): $\hat{\mu}_x = \frac{E_x}{E_x}$ Probability of death, from force: $\hat{q}_v = 1 - e^{\hat{q}_x}$

Variance of force, and of prob.:

$$Var(\hat{\mu}_x) = \sigma_{\hat{\mu}_x}^2 = \frac{\hat{\mu}_x}{E_x} = \frac{D_x}{E_x^2}$$

$$Var(\hat{q}_x) = (e^{-\hat{\mu}_x})^2 \times Var(\hat{\mu}_x)$$

Weight:

$$\mathbf{w}_{t} = \frac{1}{\operatorname{Var}(\hat{\mathbf{q}}_{x})} = \frac{\left(\mathbf{E}_{x}\right)^{2}}{\left(1 - \hat{\mathbf{q}}_{x}\right)^{2} \times \mathbf{E}}$$

ARC, Winnipeg. Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

Formulas: Regression

Improvement rate: $q_x^{init_year+t} = q_x^{init_year} \times (1 - IR_x)^t$

Regression on In(qx): linear form

$$\ln\left(q_x^{init_year+t}\right) = \ln\left(q_x^{init_year}\right) + t \times \ln\left(1 - IR_x\right)$$

$$y_i = \beta_0 + \beta_1 \times x_i$$

Weighted Linear Regression (Min W, find slope):

$$W = \sum_{i=1}^{n} w_i \times (y_i - \beta_0 - \beta_1 \times x_i)^2$$

Formulas: slope, IR,

Slope factor, weighted linear regression:

$$\hat{\beta}_{l(w)} = \frac{\sum_{i=1}^{n} w_{i} \times x_{i} \times y_{i} - \frac{\left(\sum_{i=1}^{n} w_{i} \times x_{i}\right) \times \left(\sum_{i=1}^{n} w_{i} \times y_{i}\right)}{\sum_{i=1}^{n} w_{i}}}{\sum_{i=1}^{n} w_{i} \times x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} w_{i} \times x_{i}\right)^{2}}{\sum_{i=1}^{n} w_{i} \times x_{i}}}$$

Improvement rate: $IR_x = 1 - e^{\beta_1}$

Formulas: bounds, R²

Confidence interval: upper and lower bounds

$$LB = \hat{\beta}_{l(w)} - t_{\alpha/2, n-2} \times s_{\hat{\beta}_{l}} \qquad rate(LB) = 1 - e^{LB}$$

$$rate(LB) = 1 - e^{LL}$$

$$UB = \hat{\beta}_{1(w)} + t_{\alpha/2, n-2} \times s_{\hat{\beta}}, \qquad rate(UB) = 1 - e^{UB}$$

$$rate(UB) = 1 - e^{UB}$$

Worth of regression: R²

$$R^{2} = \frac{\sum_{i=1}^{n} w_{i} \times (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} w_{i} \times (y_{i} - \overline{y})^{2}}$$

5. Projection Scales, Proposal

- 15-year: 1992 to 2007 mirrored to 2006-2021
- CPM-CAN Experience
- Income class 4
- Long term: blend of CPP and QPP
 - 2060 assumptions in December 2009 Report
- Mid term: transition from 2021 to 2030
- Based on blended C/QPP 2020 assumptions, adjusted
- Impact: q(x) decreases faster, higher e(x) higher-actuarial-liabilities

Results

- Charts show impact on a generational basis
- Change from UP-94 G to CPM-CAN-4 2005-2007
- UP-94 G : AA Projection Scale
- CPM-CAN-4 2005-2007: Short/Mid/Long Projection Scales
- Effect on complete life expectancy and PV of life annuity-due \dot{e}_{x} & \$1,000× \ddot{a}_{x}

6. Conclusion

- Canadian pattern of mortality known
- Cost of pensions using UP-94 and AA may be underestimated
- · Recent trend in mortality
 - faster decrease than thought with previous scales
 - not known when it will trail off
 - No crystal ball: use consensus for long term

ARC, Winnipeg. Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

Next Steps

- CIA: decision to release Phase II and Phase III reports
- CIA: may provide additional comments
- Discussion at CIA Fall 2012 Pension Seminar
- Actuarial Standards Board (Canada): decide future recommendations for mortality tables for pensions plans purposes

ARC, Winnipeg. Mortality Improvement for Canadian Pensioners: Proposed Projection Scales

42

